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ABSTRACT
Continuous cover forests contain large numbers of spatially distributed trees of dif-
ferent sizes. The growth of a particular tree is a function of the properties of that tree
and the neighbor trees, since they compete for light, water and nutrients. Such a dy-
namical system is highly nonlinear and multidimensional. In this paper, a particular
tree is instantly harvested if a control function based on two local state variables, S
and Q, is satisfied, where S represents the size of the particular tree and Q represents
the level of local competition. The control function has two parameters. An explicit
nonlinear present value function, representing the total value of all forestry activi-
ties over time, is defined. This is based on the parameters in the control function,
now treated as variables, and six new parameters. Explicit functions for the optimal
values of the two parameters in the control function are determined via optimization
of the present value function. Two equilibria are obtained, where one is a unique
local maximum and the other is a saddle point. An equation is determined that
defines the region where the solution is a unique local maximum. Then, a case study
with a continuous cover Picea abies forest, in southern Sweden, is presented. A new
growth function is estimated and used in the simulations. The following procedure
is repeated for five alternative levels of the interest rate: The total present value
of all forest management activities in the forest, during 300 years, is determined
for 1000 complete system simulations. In each system simulation, different random
combinations of control function parameters are used and the total present value
of all harvest activities is determined. Then, the parameters of the present value
function are estimated via multivariate regression analysis. All parameters are de-
termined with high precision and high absolute t-values. The present value function
fits the data very well. Then, the optimal control function parameters and the op-
timal present values are analytically determined for alternative interest rates. The
optimal solutions found within the relevant regions are shown to be unique maxima
and the solutions that are saddle points are located far outside the relevant regions.

1. Introduction

Continuous cover forests, CCF, can be found in most parts of our world. Such forests
may over time be partly harvested. All the time, however, living trees grow there. In
typical cases, these trees also give seeds and new seedlings. In this way, the forest has
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a continuous tree cover. This paper is focusing on optimization of the decision rules
to be used in continuous cover forest management.
In earlier research on optimal CCF management, several interesting results have been
reported. However, the level of analysis has not made it possible to investigate optimal
harvest decisions for each tree. The reason is that, when we optimize the decisions to
be made with respect to a particular tree, we have to know the exact spatial structure
of the forest. We have to know if the particular tree is surrounded by several other
trees or if it has a lot of free space. Usually, which can be proved, it is rational to
let a tree without competitors continue to grow longer, than a tree that has several
competitors.
Pukkala et. al (2010), optimized the steady-state structure and associated management
of uneven-sized Scots pine and Norway spruce stands, in Finland. This was done based
on the tree diameter distribution and partial harvesting with fixed time intervals. In
such a study, it was of course not possible to determine the optimal treatment for each
tree, based on tree properties and local competition. Nevertheless, quite interesting
results could be derived. For instance, it was found that, in most cases, uneven-sized
management was more profitable than even-aged management, with simultaneous har-
vests of all trees. Similar results were also found and reported by Tahvonen et al (2010).
They applied a very general growth model and could study changes of tree size dis-
tributions over time. However, the individual tree properties, local competition and
associated optimal decisions were not covered. R¨am¨o and Tahvonen (2014) studied
the CCF problems with more detailed models. Several interesting numerical results
followed. Still, however, the decisions were not optimized for each individual tree.
Thanks to new growth functions for individual trees, and thanks to spatially explicit
numerical simulations, we can now optimize decisions at a more detailed level. In order
to manage CCF forests, it is of fundamental importance to understand and to be able
to predict how the trees grow in uneven- aged forest stands. Fagerberg et al (2021) and
(2022) are recent and detailed investigations of this topic. Several alternative growth
models for individual trees are estimated, compared and tested. One of these models,
developed and reported in Lohmander (2017), is one such example. That model was
extended by Hatami et al (2018) to handle competition in multi species forest stands
in the Caspian forests. The model has also been extended and the new parameters
have been determined, to handle competition between trees in spruce forests in south-
ern Sweden, as reported and evaluated by Fagerberg et al (2021) and (2022). This
particular version of the model is also used in the analysis presented in this paper.
Continuous cover forests contain large numbers of spatially distributed trees of differ-
ent sizes. The growth of a particular tree is a function of the properties of that tree
and the neighbor trees, since they compete for light, water and nutrients. Such a dy-
namical system is highly nonlinear and multidimensional. Lohmander (2018), (2019a)
and (2019b) shows how dynamic management of such systems can be optimized, via
optimal control functions, dynamically applied to each tree. Lohmander (2021) applies
a related method to optimize the management of a dynamic multi species system with
animals.
In this paper, the ambition is to really optimize the decisions in CCF forests, for each
tree, based on detailed information about tree properties and local competition. A
general mathematical approach will be used and concrete numerical analysis, based
on CCF forest management decisions, empirical data and estimated functions from
Fagerberg et al (2022).
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2. Materials and methods

In this analysis, a particular tree is instantly harvested if a control function based
on two local state variables, S and Q, is satisfied, where S represents the size of the
particular tree and Q represents the level of local competition. The control function has
two parameters. An explicit nonlinear present value function, representing the total
value of all forestry activities over time, is defined. In typical cases, this represents
the expected present value of forestry, per hectare, in the region. Of course, if the
expected present value of forestry should be numerically specified and calculated, it
is necessary to have access to a large number of particular parameters, representing
growth functions, interest rates, price functions, cost functions, etc.
In this first phase of the analysis, we can however leave the empirical details. It is
sufficient to investigate the problem in the following general form: The value function
is based on the parameters in the control function, now treated as variables, and six
new parameters. Then, explicit functions for the optimal values of the two parameters
in the control function are determined via optimization of the present value function.
A particular tree is instantly harvested if a control function, C(.), based on two local
state variables, S and Q, is satisfied, where S represents the size of the particular tree
and Q represents the level of local competition. The control boundary, B, has two
parameters (x and y).

B = x+ yQ x > 0, y > 0 (1)

C(S,Q) = S −B(Q;x, y) (2)

C(S,Q) = S − (x+ yQ) (3)

C(S,Q) = S − x− yQ (4)

3
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Figure 1
Illustration of the control function C(S,Q) via the control boundary: A particular tree
should instantly be harvested if a control function based on two local state variables,
S and Q, is satisfied. S represents the size of the particular tree and Q represents the
level of local competition. The control boundary, B, has two parameters, x and y. y
is the slope, dS

dQ , of the control boundary. In case the local state, (S, Q), is found in
the yellow sector, below and to the left of the control boundary, then the particular
tree should not be instantly harvested. In case the local state is found in the white
sector, above and to the right of the control boundary, then the particular tree should
be instantly harvested. If the state is located exactly on the control boundary, then
both decisions can be considered optimal.

S > x+ yQ

S = x+ yQ

S < x+ yQ

 ⇒


C(S,Q) > 0

C(S,Q) = 0

C(S,Q) < 0

 ⇒


Harvest

Harvest or Wait

Wait

 (5)

Special case and optimal resource distribution interpretation:

We may define S, the size of the tree, as the diameter, D, at “breast height”,
1.3 meters above ground. Then, we may interpret B as the diameter limit, DL.

If D> DL, then the tree should be instantly harvested.

If D< DL, then we should wait. The tree should not yet be harvested. It should
continue to grow until it reaches DL.

If D = DL, then we may harvest the tree or wait longer. With a constantly
growing tree, this special case however occurs only during a time interval of length
zero.

DL is a decreasing function of local competition.
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This is reasonable, since growth resources such as nutrients, light and water are locally
constrained. The particular tree negatively affects the growth of the competitors
and the competitors negatively affect the growth of the particular tree. In order
to avoid these negative competition effects, the trees with more local competition
should be harvested when the diameters are smaller than the DL determined with
less competition.

The present value function:

An explicit nonlinear present value function, (6), representing the total value
of all forestry activities over time, is suggested.

f(x, y) (6)

This is based on the parameters in the control function, x and y, now treated as
variables, and six new parameters.

f(x, y) = k + ax− bx1.5 + cy − gy2 − hxy (7)

(a, b, c, g, h > 0) (8)

The functional form is motivated the following way: If there are no exogenous distur-
bances, such as competition, f(.) is a strictly concave function of x. Then, since y does
not influence the decisions, the relevant function can be simplified to (9).

f1(x) = f(x, y)|y=0 = k + ax− bx1.5 (9)

df1(x)

dx
= a− 1.5bx0.5 (10)

d2f1(x)

dx2
= −0.75bx−0.5 (11)

(x > 0) ⇒ d2f1(x)

dx2
< 0 (12)

Hence, if there are no exogenous disturbances, such as competition, then f(.) is a
strictly concave function of x, for strictly positive values of x. The optimal value of x
is unique and maximizes f. The first order optimum condition is:

df1(x)

dx
= a− 1.5bx0.5 = 0 (13)

As a result, we get:

1.5bx0.5 = a (14)

5
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x0.5 =
2a

3b
(15)

0 < x =
4a2

9b2
< ∞ (16)

This optimal value is an explicit function of a and b. It is strictly greater than 0
and strictly less than infinity. When there is competition, however, we also have to
determine the value of y. This value is in general different from zero. The optimal value
of y is unique and dependent on x. In fact, x and y should then be simultaneously
optimized. The equations (17) – (19) show this fact. The first order optimum condition
with respect to y is (17).

df(x, y)

dy
= c− 2gy − hx = 0 (17)

The second order maximum condition (18) is always satisfied:

d2f(x, y)

dy2
= −2g < 0 (18)

The optimal value of y is unique and dependent on x:(
df(x, y)

dy
= 0

)
⇒

(
y =

c− hx

2g

)
(19)

In order to get a perspective on the objective function, we may study the optimal
value of x as a function of an exogenously determined value of y. Equations (20) to
(28) show that the optimal value of x is a strictly decreasing function of y. We may
consider the objective function to be a mountain, with a mountain ridge, which is
parallel to an arrow with a direction such that dx/dy < 0. This is found from the
following equations. A 3 - dimensional map of the objective function, with such a
mountain ridge, is shown in Figure 2.

df(x, y)

dx
= a− 1.5bx0.5 − hy = 0 (20)

a− hy = 1.5bx0.5 (21)

x0.5 =
a− hy

1.5b
(22)

(x > 0) ⇒ (a− hy > 0) (23)

√
x =

2(a− hy)

3b
(24)
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x =
4(a− hy)2

9b2
(25)

x =

(
4

9b2

)
(a2 − 2ahy + h2y2) (26)

dx

dy
=

(
4

9b2

)
(−2ah+ 2h2y) (27)

dx

dy
=

(
4

9b2

)
(−2h)(a− hy) < 0 (28)

(> 0) (< 0) (> 0)

We may also determine the sign of (28) via total differentiation of the first order
optimum condition. This is done via the equations (29) to (37)

df(x, y)

dx
= a− 1.5bx0.5 − hy = 0 (29)

d

(
df(x, y)

dx

)
=

d2f

dx2
dx+

d2f

dxdy
dy = 0 (30)

d2f

dx2
dx = − d2f

dxdy
dy (31)

dx

dy
=

(
d2f
dxdy

)
(
d2f
dx2

) (32)

df(x, y)

dx
= a− 1.5bx0.5 − hy = 0 (33)

d2f

dx2
= −0.75bx−0.5 < 0 (34)

d2f

dxdy
= −h < 0 (35)

dx

dy
=

(h)

(−0.75bx−0.5)
(36)
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dx

dy
=

−4h
√
x

3b
< 0 (37)

Alternative functional forms

The following functional form, (38), was found to have reasonable qualitative
properties

f(x, y) = k + ax− bx1.5 + cy − gy2 − hxy (38)

However, there are other functional forms that also give reasonable qualitative results.
Equation (39) is one such example:

f(x, y) = k + ax− bx2 + cy − gy2 − hxy (39)

Regression analyses based on empirical data however showed that the functional
form (38) fits the empirical data better than the alternative function (39). Hence, the
alternative function was not selected.

The case of only one free variable

If x is a free variable and there is no competition, we may select y = 0 with-
out influencing the decisions.

df1(x)

dx
= a− 1.5bx0.5 = 0 (40)

Then, the first order optimum condition gives the following solution:(
df1(x)

dx
= 0

)
⇒

(√
x =

2a

3b

)
(41)

The optimal value of x is strictly positive:

x =
4a2

9b2
> 0 (42)

This solution is a unique maximum, since:

d2f1(x)

dx2
=

−3b

4
√
x

(43)

(x > 0) ⇒ d2f1(x)

dx2
< 0 (44)

The case of two free variables

If x and y are free variables, then x and y should be determined from the two

8



Asian Journal of Statistical Sciences Peter Lohmandera and Nils Fagerbergb

first order optimum conditions found in (45).
df
dx = a− 1.5b

√
x− hy = 0

df
dy = c− hx− 2gy = 0

(45)

From the first order conditions, we get:(
df

dy
= 0

)
⇒

(
y =

c− hx

2g

)
(46)

Substitution gives (47).(
df

dx
= 0 ∧ df

dy
= 0

)
⇒

(
a− 1.5

√
x− h

(
c− hx

2g

)
= 0

)
(47)

a− 1.5b
√
x− ch

2g
+

h2x

2g
= 0 (48)

h2

2g
x− 3bg

2g

√
x+

2ag − ch

h2
= 0 (49)

(g ̸= 0) ⇒ (h2x− 3bg
√
x+ (2ag − ch) = 0) (50)

Via extended substitution, we get (51).

(z =
√
x) ⇒ (h2z2 − 3bgz + (2ag − ch) = 0) (51)

Now, it becomes possible to determine the optimal solution via the famous Quadratic
Equation.

(h ̸= 0) ⇒
(
z2 − 3bg

h2
+

2ag − ch

h2
= 0

)
(52)

p = −3bg

h2
∧ q =

2ag − ch

h2
(53)

z2 + pz + q = 0 (54)

z = −p

2
±

√(
−p

2

)2

− q (55)

9
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z =
3bg

2h2
±

√(
3bg

2h2

)2

+
ch− 2ag

h2
(56)

From now on, we restrict the attention to the case with two real solutions. That is
also what we get with empirically relevant parameters.

z =
3bg ±

√
9b2g2 + 4ch3 − 8agh2

2h2
(57)

There are to solutions, explicitly presented in (58) and (59).

z1 =
3bg −

√
9b2g2 + 4ch3 − 8agh2

2h2
(58)

z2 =
3bg +

√
9b2g2 + 4ch3 − 8agh2

2h2
(59)

The two different z solutions to the first order optimum conditions can be transformed
to corresponding x and y values, as seen in (60) and (61). We have to investigate if
one of these is a maximum. It is also interesting to determine the properties of the
other solution.

(x1, y1) =

(
(z1)

2,
c− h(z1)

2

2g

)
(60)

(x2, y2) =

(
(z2)

2,
c− h(z2)

2

2g

)
(61)

10
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Figure 2

The graph shows the objective function “mountain”, f, when r = 1%. Notice
that the “mountain ridge” is parallel in the (x,y) plane, to an arrow with a direction
dx
dy < 0. Obviously, there are two stationary points. One of these is a unique local
maximum. The other is a saddle point.

A more detailed analysis of the nature of the equilibria

Two equilibria are obtained. One is a local maximum and the other is a saddle
point.

We already know the first order optimum conditions:
df
dx = a− 3b

2

√
x− hy = 0

df
dy = c− hx− 2gy = 0

(62)

The second order derivatives give us:

[
D
]
=

 d2f
dx2

d2f
dxdy

d2f
dydx

d2f
dy2

 =

− 3b
4
√
x

−h

−h −2g

 (63)

Second order conditions of a unique local maximum:

Two strict inequalities, (64) and (65), should be satisfied, if the solution is a
unique local maximum.

The first inequality, (64), is satisfied everywhere, for x > 0 and all y.∣∣D1

∣∣ = ∣∣∣d2f
dx2

∣∣∣ = ∣∣∣− 3b
4
√
x
< 0

∣∣∣ (64)

The second inequality, (65), is not satisfied for all values of x. The limiting value of x
will be determined from the inequality.

∣∣D2

∣∣ =
∣∣∣∣∣∣∣
d2f
dx2

d2f
dxdy

d2f
dydx

d2f
dy2

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
− 3b

4
√
x

−h

−h −2g

∣∣∣∣∣∣ = 3bg

2
√
x
− h2 > 0 (65)

3bg

2
√
x
− h2 > 0 (66)

3bg > 2h2
√
x (67)

11
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2h2
√
x < 3bg (68)

√
x <

3bg

2h2
(69)

x <
9b2g2

4h4
(70)

The inequality (70) gives the limiting value of x. Below that limit, we have a
maximum. Above the limit, we have a saddle point. Compare Figure 3.

General Observations

It has been found that two equilibria exist, where one is a unique local maxi-
mum and the other is a saddle point. An equation is determined that defines the
region where the solution is a unique local maximum.

3. Result

The general mathematical findings developed in the earlier section have been applied
to a CCF case study. Below, numerical results from this analysis, with a continuous
cover Picea abies forest in southern Sweden, is presented. An individual tree growth
function, which is an extended version of Lohmander (2017), developed in Fagerberg
at al (2021) and tested in Fagerberg et al (2022), was used in the simulations.
A spatially and dynamically explicit simulation model was created. This is found in
the Appendix. This made it possible to follow the development of individual trees,
during 300 years. The initial positions and properties of the trees were collected
from a real forest area. In the simulation model, during each period of five years,
the growth of each tree was determined as a function of the tree properties and
the competition from neighbor trees. In a particular period, a tree was harvested if
the control function gave that instruction. Compare Figure 1 and equation (5). The
control function was based on information about the individual tree and the local
competition. If the tree was not harvested, it continued to grow until the next period.
Each period, new seedlings started to grow in random locations.
The following procedure was repeated for five alternative levels of the interest rate:
The total present value of all forest management activities in the forest, during
300 years, was determined for 1000 complete forest system simulations. In each
simulation, different random combinations of control function parameters were used
and the total present value of all harvest activities was determined. In this process,
cost functions, other functions and parameters were obtained from Fagerberg (2021).
Then, the parameters of the present value function were estimated via multivariate
regression analysis. All parameters were determined with high precision and high
absolute t-values. The estimated present value function was found to fit the data very
well. Then, the optimal control function parameters and the optimal present values
were analytically determined for alternative interest rates. The optimal solutions
found within the relevant regions are shown to be unique maxima and the solutions
that are saddle points are located far outside the relevant regions.

12
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The definition of competition in the control function and control boundary:

The competition was defined as the total basal area of competing trees, square
meters per hectare, within a circle with radius 10 meters. The subject tree was in the
center of the circle. With that definition of competition, all parameters of relevance
to the determination of the optimal control function could be determined with high
precision and high absolute t-values. Compare the values reported in Tables 1, 2 and
3.
It could be practically convenient and perhaps cost efficient with a simpler definition
of competition. Time could perhaps be saved if we did not have to investigate
the basal area of the competitors. Let us investigate how the results change if we
temporarily redefine competition and only consider information about the “closest
and biggest neighbor tree”. Hence, we temporarily redefined competition the following
way: We only considered the competition from the neighbor tree with the largest
value of the ratio (Tree diameter) / (Distance to Subject tree). For each subject
tree, all neighbor trees were investigated. The local competition of relevance to a
particular subject tree, was then temporarily redefined as the maximum value of
this ratio. In this test, we also selected the rate of interest 2%. With the redefined
competition, the p-values of the parameters c, g and h were approximately 0.116,
0.352 and 0.182 respectively. Normally, in statistical analyses, p-values should, at
least, be below 0.05 in order to be considered significant. The redefined competition
gave much higher p-values than the original definition. Thus, the estimated parameter
values of redefined competition were very unreliable. Furthermore, the estimated
signs of the parameters differed from the corresponding signs reported in Table 1.,
in two of the three cases. The p-values of the parameters in Table 1. are extremely
low. Hence, we have no reason to believe in the signs and/or the parameter values,
determined with the redefined competition. Observation concerning the definition
of competition: The redefined competition did not give satisfactory t-values and
p-values of the estimated parameters. This is understandable, since if we only consider
the competition from the biggest and/or closest competitor, we do not consider all
of the other trees in the local area, that also contribute to the total level of competition.

Table 1.

t-values and p-values in five different regression analyses, with different rates of
interest in the objective function. In the table, the rows “k, x, x1.5, y, y2 and xy”,
correspond to the parameters “k, a, -b, c, -g and -h”. The follows from the functional
form of the objective function, namely

f(x, y) = k + ax− bx1.5 + cy − gy2 − hxy

13
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r% 1 1,5 2 2,5 3

t- values in the regression analyses
k -8,97041 -6,11472 -1,14039 6,363739 16,74447
x 27,66237 34,24437 41,18366 45,60594 46,64495

x1.5 -30,5576 -38,3753 -46,6355 -51,7893 -52,7345
y 32,01628 35,58006 38,24762 37,00359 32,11392
y2 -25,4535 -27,9865 -28,9649 -26,5497 -21,8865
xy -53,3308 -62,2809 -69,5523 -69,3717 -62,1029

p- values in the regression analyses
k 1,44E-18 1,39E-09 0,2544 3E-10 1,25E-55
x 2,3E-125 2,2E-170 4,1E-217 6,4E-246 1,5E-252

x1.5 3,9E-145 2,2E-198 1,7E-252 1,5E-284 2,8E-290
y 3,9E-155 1,8E-179 1,6E-197 3,9E-189 8,4E-156
y2 1,9E-110 1,4E-127 3,1E-134 8E-118 5,6E-87
xy 7,2E-294 0 0 0 0

Determination of the optimal control function parameter values:

Now, the optimal control function parameters, and as a consequence, the opti-
mal present values, are analytically determined for alternative interest rates. In this
process, we use the parameter estimates from the regressions. The optimal solutions
found within the relevant regions are shown to be unique maxima and the solutions
that are saddle points are located far outside the relevant regions. The regression
analysis gave the parameter values reported in Table 2.

Table 2.

Estimated parameter values in five different regression analyses, with different
rates of interest in the objective function. In the table, the rows “k, x, x1.5, y, y2 and
xy”, correspond to the signed parameters “k, a, -b, c, -g and -h”. This follows from
the functional form of the objective function, namely

f(x, y) = k + ax− bx1.5 + cy − gy2 − hxy

Compare Table 3.

r% 1 1,5 2 2,5 3

k -235946,7178 -78658,858127 -8370,1564967 30756,29305 58298,89751
x 5501,829188 3555,596824 2616,173465 2056,220151 1642,834135

x1.5 -202,9194332 -137,408258 -105,7591839 -86,51339767 -71,63220229
y 31104,53869 18364,61462 12331,92025 8681,028154 6064,113391
y2 -1255,699477 -769,3098941 -522,3284433 -366,2971758 -255,8380047
xy -114,2172637 -74,32288849 -54,44982093 -41,549852 -31,51469255

From the results reported in Table 2., the parameter values of the objective function
could be determined. These are reported in Table 3.

14
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Table 3.

Estimated parameter values with different rates of interest in the objective
function,

f(x, y) = k + ax− bx1.5 + cy − gy2 − hxy

Compare Table 2.

r% 1 1,5 2 2,5 3

a 5501,829188 3555,596824 2616,173465 2056,220151 1642,834135
b 202,9194332 137,408258 105,7591839 86,51339767 71,63220229
c 31104,53869 18364,61462 12331,92025 8681,028154 6064,113391
g 1255,699477 769,3098941 522,3284433 366,2971758 255,8380047
h 114,2172637 74,32288849 54,44982093 41,549852 31,51469255

Optimal results when x and y are free variables:

Now, we can determine the empirically relevant optimal control function parameters
x and y. We remember that the first order optimum conditions are:

df
dx = a− 3b

2

√
x− hy = 0

df
dy = c− hx− 2gy = 0

(71)

As we saw in the earlier section, there are two solutions to this equation system,
namely:

(x1, y1) =

(
(z1)

2,
c− h(z1)

2

2g

)
(72)

(x2, y2) =

(
(z2)

2,
c− h(z2)

2

2g

)
(73)

Hence, we need the alternative values of z, reported in equations (74) and (75).

z1 =
3bg −

√
9b2g2 + 4ch3 − 8agh2

2h2
(74)

z2 =
3bg +

√
9b2g2 + 4ch3 − 8agh2

2h2
(75)

When we calculate these values, we may use the following steps:

z = −p

2
±

√(
−p

2

)2

− q (76)
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p = −3bg

h2
∧ q =

2ag − ch

h2
(77)

The numerical values of relevance to equations (74) – (77) are reported in Table 4.

Table 4.

These values will be used to derive the results in Table 5.

r% 1 1,5 2 2,5 3

p -58,59588331 -57,41035693 -55,89720722 -55,06799078 -55,35648026
q 786,8266608 743,280392 695,3401909 663,6273957 653,9528201

Discriminant 71,54272451 80,70687872 85,78425297 94,49350648 112,1321566

z1 20,83964842 19,72147774 18,68662472 17,81321834 17,08899291
z2 37,75623489 37,68887919 37,2105825 37,25477244 38,26748735

The optimal values of x, y and the objective function, reported in Table 5., are
determined based on the values reported in Table 4. Table 5. also includes information
about the saddle point and the value of x, “x− lim for maximum”, below which the
objective function is strictly concave and a unique local maximum may be found.

Table 5.

Optimization results when x and y are free variables: The maximum, the sad-
dle point and the highest value of x that is consistent with a maximum, namely “x−
lim for maximum”. (x1, y1) is the optimal solution which maximizes f(x,y). (x2, y2) is a
saddle point, which does not maximize f(x,y). f(.) is a strictly concave function, which
is consistent with a maximum, for x < “x− lim for maximum”. Units: x: mm, f: SEK/ha

r% 1 1,5 2 2,5 3

x−lim for maximum 858,3693853 823,9872707 781,1244439 758,1209022 766,0849767

x1 434,2909462 388,9366842 349,1899435 317,3107476 292,0336788
y1 -7,36600802 -6,851779285 -6,395793422 -6,146903042 -6,13520695

x2 1425,533273 1420,451615 1384,62745 1387,91807 1464,400588
y2 -52,44725093 -56,67901388 -60,36507994 -66,86751287 -78,34258428

f(x1, y1) 385063,3506 286382,7313 236439,9027 208055,4769 190206,8231

f(x2, y2) 139478,344 87127,99343 68381,80349 49121,6605 20095,36724
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Observations:

The numerical results found in Table 5. clearly show that the solution to the
first order optimum conditions in the empirically relevant region is a maximum. The
other solution, the saddle point, is found far outside the relevant region. This is also
illustrated in Figure 3.

Figure 3.

The graphs illustrate the relationship between the two x- solutions. The x-value that
gives a maximum is smaller than the x-value that gives a saddle point. The maximum
is the empirically relevant solution. The graph is constructed from the data found in
Table 5.

Optimal results when only x is a free variable:

We remember that, if we do not consider competition when the harvest deci-
sions are taken, we may let y = 0. Then, the optimal value of x is found in equation
(78).

x =
4a2

9b2
> 0 (78)

That solution is a unique maximum, which follows from equation (79).

d2f1(x)

dx2
=

−3b

4
√
x
< 0 (79)

In Table 6., we find the optimal solutions for different rates of interest. We also find
how much the optimal solution changes if we first ignore competition and let y = 0
when we select x, and then start to consider competition in the optimal way.
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Table 6.

Optimization results when x is a free variable and y = 0: x(y=0) is the opti-
mal value of x, which maximizes f(x,y), in case y = 0. “x1 − x(y = 0)” says how
much higher the optimal x-value should be, in case we also introduce competition as
a component in the control function, and let y be different from zero. f1(x, y = 0)
gives the optimal objective function value in case we do not consider competition in
the decisions. “f(x1, y1)− f1(.)” shows how much we gain if we first only consider the
size of the subject tree, x, in the control function, and then start to also consider the
competition, via optimal values of y, different from zero. Units: x: mm, f: SEK/ha.

r% 1 1,5 2 2,5 3

x(y = 0) 326,7265347 297,5889722 271,965849 251,0671928 233,7697494

x1 − x(y = 0) 107,5644115 91,34771205 77,22409448 66,24355478 58,26392943

f1(x, y = 0) 363251,1438 274043,2767 228799,7893 202839,4334 186313,8722

f(x1, y1)− f1(.) 21812,20684 12339,45466 7640,11335 5216,043419 3892,950946

Figure 4. illustrates that the objective function is strictly concave in the neighbor-
hood of the maximum.
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Figure 4.

The objective function in the neighborhood of the maximum, if the rate of in-
terest is 1%. This graph is based on the parameter and variable values found in Table
3. and in Table 5. Units: x: mm, f: SEK/ha.

In Figure 5., we observe that the present value of forestry is strongly affected
by the rate of interest in the capital market. If the rate of interest is very low, the
present value if very high, and vice versa. Furthermore, the shape of the function is
affected by changes in the rate of interest.

Figure 5.

The objective function in the neighborhood of the maximum, for different rates
of interest. This graph is based on the parameter and variable values found in Table
3. The rate of interest is 1% (upper surface), 2% (middle surface) or 3% (bottom
surface). Units: x: mm, f: SEK/ha.

Figure 6 shows the optimal solutions as balls in 3D space. In the Figures 7, 8
and 9, the corresponding information is illustrated in three 2D graphs.
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Figure 6.

The objective function in the neighborhood of the maximum, for different rates
of interest. This graph is based on the parameter and variable values found in Table
3. and in Table 5. The rate of interest is 1% (upper surface), 2% (middle surface) or
3% (bottom surface). The optimal solutions, for different rates of interest, are shown
in the graph, in the form of balls. These may be considered as functions of the rate of
interest. The graph also illustrates that, with optimal values of x and y, the objective
function value is a decreasing function of the rate of interest. Units: x: mm, f: SEK/ha.

In Figure 7., we observe that x is a strictly decreasing function of the rate of
interest. This means that the optimal limit diameter of a tree is a decreasing function
of the rate of interest. Such results should be expected, since they were also found
in earlier studies, such as Pukkala et al (2010), Tahvonen et al (2010) and Rämö &
Tahvonen (2014).
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Figure 7.

The x value that maximizes the objective function, as a function of the inter-
est rate, when we also consider competition and select the optimal value of y. A linear
regression estimation of this function is found in (80).

x∗ ≈ 499− 71.2r

(t ≈ 50.1)(t ≈ −15.2) (80)

In Figure 8., we see that the optimal value of y, is negative. This is consistent with
Figure 1 and equation (5). Trees that have more local competition should be harvested
when they are smaller, than trees that have less local competition. Furthermore, y is
an increasing function of the rate of interest. This means that the degree to which we
should consider local competition when harvest decisions are taken, is reduced if the
rate of interest increases. Mostly, such results have not been possible to find earlier
studies, since the level of spatial detail in the analyses usually has been too low. Similar
results have however been reported by Lohmander (2018) and (2019b).

Figure 8.

The y value that maximizes the objective function, as a function of the inter-
est rate, when we also consider and select the optimal values of x. A linear regression
estimation of this function is found in (81).

y∗ ≈ −7.85 + 0.633r

(t ≈ −30.8)(t ≈ 5.27) (81)

In Figure 9., we see that the optimal present value of forestry is a strictly decreasing and
strictly convex function of the rate of interest. This type of results should be expected.
They are also found in earlier studies, such as Pukkala et al (2010), Tahvonen et al
(2010) and R¨am¨o & Tahvonen (2014).
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Figure 9.

The maximum objective function value as a function of the rate of interest,
when we select optimal values of x and y. A regression estimation of this function is
found in

f(x∗, y∗) ≈ 90917 + 293641r−1

(t ≈ 65.9)(t ≈ 133.5) (82)

Figure 10. shows that the optimal value of x is a strictly decreasing function of the
rate of interest, also if we do not take the local competition into account in the
harvest decisions. The values of x are however different from the optimal values of x
reported in Figure 7. The reason is that, in Figure 7., we also take local competition
into account in the optimal way.

Figure 10.

The x value that maximizes the objective function as a function of the interest
rate, if we do not consider competition and let y = 0. A linear regression estimation
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of this function is found in (83)

x∗ ≈ 369− 46.5r

(t ≈ 62.7)(t ≈ −16.8) (83)

If we do not take local competition into account when harvest decisions are taken, in
the optimal way, then the present value of forestry follows the function in Figure 11.
These function values are lower than the optimal present values of forestry, based on
optimal values of x and y, as reported in Figure 9.

Figure 11.

The maximum objective function value as a function of the rate of interest,
when we select optimal values of x, but we do not consider competition and let y =
0. A regression estimation of this function is found in (84)

f(x∗, y = 0) ≈ 96529 + 266415r−1

(t ≈ 100.2)(t ≈ 173.5) (84)

Figure 12. illustrates how much the optimal value of x increases, if we first ignore
local competition and optimize x, and then start to consider local competition in the
optimal way.

23



Asian Journal of Statistical Sciences Peter Lohmandera and Nils Fagerbergb

Figure 12.

The graph shows how much the optimal values of x, determined for y = 0, in-
crease when we also start to consider competition in the control function, and
optimize y as a free variable. Hence, this graph shows the optimal x values reported
in Figure 7 minus the optimal x values reported in Figure 10. A linear regression
estimation of this difference is found in (85).

∆x∗ ≈ 130− 24.7r

(t ≈ 31.9)(t ≈ −12.9) (85)

Figure 13. shows how much higher the optimal present value of forestry becomes if we
consider local competition when harvest decisions are taken, compared to what the
optimal present value would be if we just ignored local competition. One example:
If the rate of interest is 2%, this difference is approximately 7500 SEK/ha. Practical
interpretation: If the present value of the costs of investigating the local competition
levels, and to use that information when harvest decisions are taken, is lower than
7500 SEK/ha, it is rational to undertake such actions. If the present value of these
costs is higher, then it is rational to ignore competition when harvest decisions are
taken.
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Figure 13.

The graph shows how much the maximum present value improves, if we first
do not consider competition at all, and then start to consider competition in the
optimal way. (In the first case, we optimize x, with the constraint y = 0. Then,
we optimize x and y simultaneously.) Hence, this graph shows the function values
in Figure 9 minus the function values in Figure 11. A regression estimation of this
difference is found in (86). (It is important to be aware that the costs of collecting
and using information about local competition in harvesting decisions, have not been
considered when this graph has been constructed.)

f∗(x1, y1)− f∗
1 (x)|y=0 ≈ −5611 + 27226r−1

(t ≈ −13.1)(t ≈ 39.8) (86)

4. Discussion

The general approach to continuous cover optimal forest management developed here,
can of course be applied in every forest region of the world. Uneven aged forests,
suitable for CCF management, are common in large parts of the world, for instance
in tropical rain forests and in remote areas of Canada and Russia. With the new
approach, it is possible to obtain higher expected present values from forestry than
before, since the harvest decisions now can be adapted to conditions of relevance that
were not earlier possible to consider. In this paper, we have in seen that it is important
to consider the local competition situation, which may differ strongly. We have also
seen how the harvest decisions optimally should be affected by this information,
and exactly how the optimal harvest control function should be determined from
empirical data. For these reasons, cooperation initiatives and projects of this nature,
in different parts of the world, are strongly recommended.

For the Taiga area, representing large parts of the Nordic countries, even more
specific knowledge has been obtained. From the earlier studies of continuous cover
forestry, by Pukkala et al (2010), Tahvonen et al (2010) and R¨am¨o & Tahvonen
(2014), we know that CCF often gives higher present values than rotation forestry
based on periodic harvesting of all trees. This is very important information, since
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rotation forestry is the most common forestry method in the Nordic countries. CCF
also has several environmental advantages compared to rotation forestry. So, already
based on the earlier studies, it would be reasonable to adjust forestry methods, and
to start using CCF more often.

Now, with the new findings in this paper, we know that the economic results
of CCF can be even more improved, if we also take information about the local
competition into account when harvest decisions are taken. This has been clearly
shown in Figure 13 and equation (86).

As a consequence, we have even stronger reasons than before, to increase the
areas of CCF forestry in the Nordic countries.

5. Conclusions

A control function based on the size of the tree and the local competition can be used
to optimize continuous cover forestry.

The mathematical principles and statistical methods of determination of the
optimal parameters of such control functions have been presented.

Numerical values of optimal control function parameters of relevance to a par-
ticular case study forest with the species picea Abies have been determined.

Generalized versions of the method can be used to optimize management of
multi species forests, also with stochastic prices and adaptive decisions, as shown by
Lohmander (2018), (2019a) and (2019b).

The readers are encouraged to use the methodology to optimize management
of continuous cover forestry in all regions of the world.
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Appendix

SIMULATION SOFTWARE

The computer code is developed in the programming language QB64.

Rem
Rem CCF−SIM−OPT−211110−1316−r2
Rem Peter Lohmander SIMULATION & OPTIMIZATION & SOFTWARE
Rem Nils Fagerberg PARAMETERS AND FUNCTIONS
Rem

Rem Explanations:
Rem Ts = Tree species.
Rem Dbh = Diameter (mm) at breast height, 1.3 m above ground, at t=0.
Rem Th0 = Tree height (m) at t=0.
Rem Lc = Lowest part of the crown (m) at t=0.
Rem x = Distance in direction east from origo in the coordinate system (m).
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Rem y = Distance in direction north from origo in the coordinate system (m).
Rem xing = x for ingrowth (m).
Rem ying = y for ingrowth (m).
Rem Disc = Discounting factor in continuous time.
Rem BA = Basal area (m2).
Rem dBAdt = Time derivative of basal area (m2/year).
Rem Diam = Diameter (mm) at breast height, 1.3 m above ground.
Rem Harv = Harvest decision (0 = no, 1 = yes).
Rem Vol = Tree volume (m3).
Rem Height = Tree height (m).
Rem CR = Crown ratio = Crown length divided by tree height.
Rem Alive = Alive (0 = no, 1 = yes)
Rem t = Time (Five year period). In the model, 0 =< t =<60.
Rem r = Rate of interest, in continuous time.

Dim Ts(2000), Dbh(2000), Th0(2000), Lc(2000), x(2000), y(2000), Disc(61)
Dim BA(2000, 61), dBAdt(2000, 61), Diam(2000, 61), Harv(2000, 61)
Dim Vol(2000, 61), Height(2000, 61), CR(2000, 61), ALIVE(2000, 61)
Dim xing(100, 61), ying(100, 61)

“Open ”C:\Users\Peter\OneDrive\Desktop\CCF opt\CCF−opt\FOREST−data.txt”
For Input As #1
Open ”C:\Users\Peter\OneDrive\Desktop\CCF opt\CCF−opt#FOREST−OUT−r2.txt”
For Output As #2”

Screen −NewImage(1800, 1000, 256)

Input ”Default parameters? (Yes = 1, No = 0)”, NewPar
r = 0.02
DL0a = 250
DL0b = 450
DLCOMPa = -10
DLCOMPb = 0
NSIM = 1000
seed = 1
Randomize seed

If NewPar > 0.5 Then GoTo 2

Input ”r = ”, r
Input ”DL0a = ”, DL0a
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Input ”DL0b = ”, DL0b
Input ”DLCOMPa = ”, DLCOMPa
Input ”DLCOMPb = ”, DLCOMPb
Input ”NSIM = ”, NSIM
Input ”Random seed = ”, seed
Randomize seed
2 Rem

Rem Some Parameters
PI = 3.141593
Rem IngPer = Ingrowth per five year period in a 60m*60m area.
Rem We assume ingrowth of 6 trees per ha per year. During five years, we get
30 trees.
Rem However, in the experimental area of 60 m * 60 m, we get 30 * 0.36 =
approximately 10 trees
Rem per five year period. This variable is called IngPer.
IngPer = 10

Rem Discounting factors in the middle of periods
Rem r = 0.03
For t = 0 To 61
year = 5 * (t + 0.5)
Disc(t) = Exp(-r * year)
Next t

Rem Initial values of matrixes
For i = 1 To 2000
Ts(i) = 0
Dbh(i) = 0
Th0(i) = 0
Lc(i) = 0
x(i) = 0
y(i) = 0
Next i

For t = 0 To 61
For i = 1 To 2000
BA(i, t) = 0
dBAdt(i, t) = 0
Diam(i, t) = 0
Harv(i, t) = 0
Vol(i, t) = 0
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Height(i, t) = 0
CR(i, t) = 0
ALIVE(i, t) = 0
Next i
For i = 1 To 100
xing(i, t) = 0
ying(i, t) = 0
Next i
Next t

Rem Here, the initial conditions are imported from the indata file.

Trees = 0
i = 0

10 Rem Initial forest conditions
Input #1, Site
If Site = 999 Then GoTo 20
Stand = Site
i = i + 1
Input #1, Tn
Input #1, Ts(i)
Input #1, Dbh(i)
Input #1, Th0(i)
Input #1, Lc(i)
Input #1, x(i)
Input #1, y(i)
GoTo 10
20 Rem
Trees = i

Rem CR values
For i = 1 To 2000
For t = 0 To 61
CR(i, t) = 0.85
Next t
Next i

Print ””
Print ” Site = ”; Stand;
Print #2, ””
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Print #2, ” Site = ”; Stand;
Print ” The number of trees = ”; Trees
Print #2, ” The number of trees = ”; Trees

Print ” Number of simulations = ”; NSIM;
Print #2, ” Number of simulations = ”; NSIM;
Print ” Rate of interest = ”, r;
Print #2, ” Rate of interest = ”, r;
Print ” Random seed = ”; seed
Print #2, ” Random seed = ”; seed

Print ” DL0a = ”, DL0a;
Print ” DL0b = ”, DL0b
Print ” DLCOMPa = ”, DLCOMPa;
Print ” DLCOMPb = ”, DLCOMPb
Print #2, ” DL0a = ”, DL0a;
Print #2, ” DL0b = ”, DL0b
Print #2, ” DLCOMPa = ”, DLCOMPa;
Print #2, ” DLCOMPb = ”, DLCOMPb
Print ””
Print #2, ””

Rem Simulation section ****************************
Print ” SIM STAND kR kDL0 kDLCOMP Obj”
Print #2, ” SIM STAND kR kDL0 kDLCOMP Obj”

Obj−best = 0
DL0−best = 0
DLCOMP−best = 0

For SIMULATION = 1 To NSIM
DL0 = DL0a + Rnd * (DL0b - DL0a)
DLCOMP = DLCOMPa + Rnd * (DLCOMPb - DLCOMPa)

Rem Initial conditions
For i = 1 To 2000
Diam(i, 0) = Dbh(i)
lifestart = 0
If Dbh(i) > 0.1 Then lifestart = 1
For t = 0 To 61
ALIVE(i, t) = lifestart
Next t
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BA(i, 0) = PI * Dbh(i) * Dbh(i) / 4000000
Next i

ObjLoc = 0

TMAX = 59
For t = 0 To TMAX

Rem Ingrowth in random locations

For i = 1 To IngPer
Rem Here, we simulate coordinates with a uniform probability density function
Rem covering the 60 m * 60 m experimental area.
xev = 60 * Rnd
yev = 60 * Rnd
xing(i, t) = xev
ying(i, t) = yev
Next i

Rem Here, the ingrowth trees are placed in the forest coordinate system.
Rem They are also given the initial sizes.
iing0 = Trees
For iing = 1 To IngPer
i = iing0 + IngPer * t + iing
x(i) = xing(iing, t)
y(i) = ying(iing, t)
Diam(i, t) = 60
For t2 = t To 61
ALIVE(i, t2) = 1
Next t2
BA(i, t) = PI * Diam(i, t) * Diam(i, t) / 4000000
Next iing

Rem Tree property calculations
Rem The already known basal area is used to determine diameter, height and
volume.
For i = 1 To 2000
Diam(i, t) = 0
Dcm = 0
Height(i, t) = 0
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Hm = 0
Vol(i, t) = 0
If ALIVE(i, t) < 1 Then GoTo
Diam(i, t) = 2 * ((BA(i, t) / PI)0.5) * 1000
Dcm = Diam(i, t) / 10
Height(i, t) = Dcm 3 / (10 * (0.9402 + 0.1317 * Dcm) 3) + 1.3
Hm = Height(i, t)
Vol(i, t) = (10−1.06019 * Dcm 2.04239* (Dcm + 20)−0.54292* Hm 2.80843* (Hm -
1.3)−1.52110) / 1000

30 Rem
Next i

Rem Harvest section
For i = 1 To 2000
Harv(i, t) = 0

If ALIVE(i, t) < 1 Then GoTo 200

Rem Calculation of competition index for tree i.
COMP = 0
For j = 1 To 2000
If ALIVE(j, t)< 1 Then GoTo 180
If i = j Then GoTo 180
dist = ((x(i) - x(j)) 2 + (y(i) - y(j)) 2)0.5

If dist > 10 Then GoTo 180
Rem COMP = COMP + BA(j, t) * (BA(j, t) / BA(i, t))0.325 * EXP(-1 * (dist
/ 4.918)2)
Rem Note that the COMP sum now equals the competition basal area per
hectare.
COMP = COMP + BA(j, t)
180 Rem
Next j
COMP = COMP * 10000 / (PI * 10 * 10)
Rem end of calculation of competition index for tree i based on the area within
the 60m*60m area.

Rem Calculation of the net price of tree i.
PRICE = 670
COST = 1150 * (0.0105 + 0.0458 * Vol(i, t)) + 750 * Vol(i, t) / (8.7 + 10 *
Vol(i, t))
NetPrice = PRICE - COST
Rem End of calculation of net price of tree i.
Dlim = DL0 + DLCOMP * COMP
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If Diam(i, t) > Dlim And ALIVE(i, t) = 1 Then Harv(i, t) = 1
If Harv(i, t) < 1 Then GoTo 200

Rem If the tree is harvested, the present value of the tree is added to the
objective function.
ObjLoc = ObjLoc + Disc(t) * NetPrice * Vol(i, t) * Harv(i, t)

Rem If a tree is harvested, it is instantly defined as not alive.
For tt = t To 61
ALIVE(i, tt) = 0
Next tt
BA(i, t) = 0
Diam(i, t) = 0
Height(i, t) = 0
Vol(i, t) = 0
200 Rem
Next i

Rem The basal areas of not harvested trees continue to grow.
For i = 1 To 2000
dBAdt(i, t) = 0
COMP = 0
If ALIVE(i, t) ¡ 1 Then GoTo 400
For j = 1 To 2000
If ALIVE(j, t)<1 Then GoTo 300
If Diam(j, t)< 60 Then GoTo 300
If i = j Then GoTo 300
dist = ((x(i) - x(j)) 2 + (y(i) - y(j)) 2) 0.5

If dist > 10 Then GoTo 300
COMP = COMP + BA(j, t) * (BA(j, t) / BA(i, t))0.325 * Exp(-1 * (dist /
4.918)2)
300 Rem
Next j
prelgrowth = CR(i, t) * BA(i, t) 0.5* (154.4 - 212.2 * BA(i, t) - 142.7 *
COMP0.357)
prelgrowth = prelgrowth / 10000
dBAdt(i, t) = 0
If prelgrowth > 0 Then dBAdt(i, t) = prelgrowth
BA(i, t + 1) = BA(i, t) + 5 * dBAdt(i, t)
Diam(i, t + 1) = 2 * ((BA(i, t) / PI) 0.5* 1000
400 Rem
Next i
Next t
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kr = 1000 * r
kDL0 = 1000 * DL0
kDLCOMP = 1000 * DLCOMP
OBJperHA = ObjLoc / 0.36
Print Using ”# # # # # # # #”; SIMULATION, Stand, kr, kDL0, kDL-
COMP, OBJperHA
Print #2, Using ”# # # # # # # #”; SIMULATION, Stand, kr, kDL0;
kDLCOMP; OBJperHA

If ObjLoc> Obj−best Then DL0−best = DL0
If ObjLoc > Obj−best Then DLCOMP−best = DLCOMP
If ObjLoc > Obj−best Then Obj−best = ObjLoc

Next SIMULATION

PVperHA−best = Obj−best / 0.36
Print ””
Print ”Optimal Solutions:”
Print #2, ””
Print #2, ”Optimal Solutions:”
Print ”The optimal value of DL0 = ”; DL0−best; ” mm”
Print ”The optimal value of DLCOMP = ”; DLCOMP−best
Print ”The optimal local objective function value = ”; Obj−best
Print ”The optimal E(PV) = ”; PVperHA−best; ” SEK/ha”
Print #2, ”The optimal value of DL0 = ”; DL0−best; ” mm”
Print #2, ”The optimal value of DLCOMP = ”; DLCOMP−best
Print #2, ”The optimal local objective function value = ”; Obj−best
Print #2, ”The optimal E(PV) = ”; PVperHA−best; ” SEK/ha”

Close #1
Close #2
End
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