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Introduction
What is the optimal strategy of a decision maker, BLUE, such as 

an individual or organization, when at least one more decision maker, 
RED, can influence the outcomes? This is a typical question in game 
theory. 

Game theory is a field of research that contains large numbers of 
studies with different assumptions concerning the number of players, 
the kinds of decisions that can be taken by the different participants 
and the degree of information available to the different decision 
makers at different points in time.

Luce and Raffa1 give a general description of most of the 
game theory literature. Some of the highly important and original 
publications in the field are Nash,2 von Neumann,3 and Dresher4. 
Chiang5 covers two person zero sum games and most other methods 
and theories of general mathematical economics. Isaacs6 develops 
dynamic games with and without stochastic events in continuous and 
discrete time. In Braun7 we find a section where differential equations 
are used to model and describe the development of games of conflict 
with several examples of real applications. 

Lohmander8 contains a new approach to dynamic games of conflict 
with two players. It includes a stochastic dynamic programming, SDP, 
model with a linear programming, LP, or quadratic programming, QP, 
model as a sub routine. The LP or QP can be used to solve static game 

problems, such as two person zero sum games, TPZSGs, for each state 
and stage in the SDP model. The outcomes of the repeated games 
move the positions in state space (change the states to new states) with 
different transitions probabilities, in the following periods, within 
the SDP model. The SDP model solves the complete dynamic and 
stochastic game over a time horizon with several periods. 

During the history of game theory, the TPZSGs have always 
gained considerable theoretical and practical interest. A detailed 
treatment is given by Luce and Raffa.1 Several kinds of TPZSGs 
with large numbers of military applications are well described by 
Washburn.9 This can serve as a good introduction to the analysis 
in this paper. A Nash equilibrium is the normal outcome of LP 
solutions to TPZSGs. It is however important to be aware that the 
Nash equilibrium can not always be expected to be the result in real 
world games. If the strategies of the players are gradually adjusted 
based on the observations of the decision frequences of the other 
players, mixed strategy probability orbits (constrained cycles) may 
develop. Convergence to the Nash equilibrium can not always be 
expected. Lohmander10 has developed a dynamic model and described 
these possibilities. Herings et al11 focuses on stationary equilibria in 
stochastic games. They are interested in model structure, selection and 
computation. Babu et al12 give a good historical introduction to the 
literature on stochastic games. They also develop some new results in 
the area of equilibrium strategies of dynamic games based on mixed 
strategy assumptions within static games. 
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In this paper, the two player zero sum games with diagonal game matrixes, TPZSGD, 
are analyzed. Many important applications of this particular class of games are found 
in military decision problems, in customs and immigration strategies and police work. 
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of the changes of optimal decision frequences and expected game values as functions of 
changes in different parameter values, are determined. The signs of the optimal changes 
of the decision frequences, of the different players, are also determined as functions of 
risk in different parameter values. Furthermore, the directions of changes of the expected 
optimal value of the game, are determined as functions of risk in the different parameter 
values. Finally, some of the derived formulas are used to confirm earlier game theory results 
presented in the literature. It is demonstrated that the new functions can be applied to solve 
common military problems. 
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In this paper, a particular class of TPZSGs will be analyzed, 
namely two player zero sum games with diagonal game matrixes 
were all diagonal elements are strictly positive. Let us denote them 
TPZSGDs. This may seem to be a highly particular, constrained and 
irrelevant class of games. However, this is not true. A large number 
of obvious and economically very important real world applications 
of this class of games exist, in particular in military applications, in 
customs problems and in police work. Lohmander13 defines, describes 
and solves four different types of military TPZSGD decision problems 
with this methodology. These problems include: 

a.	 The selection of roads for transport when enemy forces may 
prepare attacks along different roads with different expected 
outcomes, 

b.	 The selection of roads where attacks on enemy transports should 
be prepared, 

c.	 The positioning of guard squads and 

d.	 The positioning of intelligence, reconaissance and sabotage 
groups. 

Game theory literature usually focuses on very general classes of 
games, without giving special attention to the TPZSG, and the even 
more specific TPZSGD, classes. 

In this paper, explicit functions of the optimal decision frequences 
and the expected results of relevance to the different players are 
derived for situations with arbitrary numbers of decision alternatives. 

In the earlier game theory literature, when general classes of 
games are analyzed, it has usually not been possible to derive explicit 
functions. Earlier studies are mostly focused on general principles, 
proofs of the existence of solutions and numerical algorithms to 
calculate solutions in particular numerically specified situations.

One of the general results derived and proved in this paper is that, 
for every game in the TPZSGD class, the optimal strategy, for both 
players, always leads to a unique and completely mixed strategy Nash 
equilibrium. This means that, for each player, the optimal frequency 
of every possible decision, is strictly greater than 0 and strictly less 
than 1. 

This result is critical to analytical TPZSGD game theory. It makes 
it possible to instantly determine the equation system that should 
be used to calculate the optimal decision frequences. Hence, the 
optimal decision frequences become possible to analyze with general 
analytical methods. Explicit functions can be derived for arbitrary 
numbers of decision options and for all possible elements in the game 
matrix. In other words, we do not have to handle every particular case 
with numerical methods. 

In the existing literature on game theory, such a proof is not easily 
found. This problem is usually avoided by intuitive arguments and 
reasonable assumptions. The book by Washburn9 is one such example. 
A similar case is found in Babu et al.12 They avoid to show that the 
Nash equilibrium, which they analyze, really is completely mixed. 
Babu et al12 simply assume the existence of a particular probability 
vector. In this paper, the existence of such a probability vector will 
be proved for a diagonal game matrix where all diagonal elements 
are strictly positive. It will also be proved that all elements of the 
probability vector are strictly positive and strictly less than one. 
Furthermore, explicit functions will be derived for , 1,2,...,

i

x i n= and 
the value of the game. 

Thanks to the derived functions, it is also possible to perform 
explicit sensitivity analyses and to determine the directions of changes 
of optimal decision frequences and expected results if the direction of 
change of a particular parameter is known. 

In this study, it has been possible to derive explicit results in an 
area that is highly relevant in real applications: How are the optimal 
decision frequences of the different players changed if the level of 
risk of some parameter(s) change(s)? Related results have earlier been 
derived in stochastic dynamic ”one player” problems by Lohmander.14 
First, relevant functions of decisions and expected game values are 
determined. The first and second derivatives are determined and 
signed. Then, the Jensen inequality is used to determine the directions 
of change of the optimal decision frequences and expected game 
values under the influence of increasing risk in the different parameter 
values. 

Analysis
A TPZSGD will now be analyzed in the most general way. BLUE 

is the maximizer, who selects the row, i  . RED is the minimizer, who 
selects the column, j . The decision of BLUE is not known by RED 
before RED takes a decision and the decision of RED is not known 
by BLUE before BLUE takes the decision. The game matrix, ( , )A i j
, is diagonal. All diagonal elements ( , )ijc A i j=  are strictly positive 
and represent the reward that BLUE obtains from RED in case i j= . 
(The reward that BLUE obtains is equal to the loss that RED gets). In 
case i j≠ , the reward is zero. Equations (2.1) and (2.2) define these 
conditions. 

	        0, 1,....  1,2,...,,  , jc i n
ij

n
i j

= ==
≠

      	   (2.1)

          
0 , 1,..., , 1,2,...,c g i n j nij ii j

= > = =
=

                 (2.2)

A concrete example is the following: RED should move an army 
convoy from one city to another. One road, among the existing n
available roads, should be selected. BLUE wants to destroy as many 
RED trucks as possible. RED sends the convoy via road j  and BLUE 
moves the equipment and troops to road i  and prepares an attack 
there. If i j= , BLUE attacks RED and destroys the number of RED 
trucks found in a diagonal element of the game matrix where i j=
. ( , ) 0A i j for i j> = . If BLUE and RED select different roads, no 
attack takes place and no trucks are destroyed.

		       ( , ) 0A i j for i j> = .

Different roads usually have different properties with respect to 
slope, curvature, protection, options to hide close to the road and so 
on. As a consequence, the values of the diagonal elements of the game 
matrix, ( , ) 0A i j for i j> = , are usually not the same for different 
values of i .

The maximization problem of BLUE

The maximization problem of BLUE is defined here. The expected 

reward, 
0

X , is the objective function, which is found in (2.1.1). The 

number of possible decisions is n and the probability of a particular 

decision, i , is 
i

x  . The total probability can not exceed 1, which is 

shown in (2.1.2.). ig is defined in (2.2). Since RED can select any 
decision j , 0x  is constrained via (2.1.3). Furthermore, no probability 
can be negative, which is seen in (2.1.4). 
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max 0x   	                      (2.1.1)

. .s t

                                            
1

1

n
xii
≤∑

=
                                 (2.1.2)

                                   
, 1,...,0x g x i ni i≤ =  		       (2.1.3)

                                       
0 , 1,...,x i ni ≥ =                           (2.1.4)

Let iλ  denote dual variables. The following Lagrange function is 
defined:

                    
( )10 0 01 1

n n
L x x g x xi i i ii i

λ λ = + − + −∑ ∑ 
 = =    

 (2.1.5)

The following derivatives will be needed in the proceeding 
analysis:

		               
1 0

10

ndL xid iλ
= − ≥∑

=
 	                      (2.1.6)

		          
0 , 1,...,0

dL g x x i ni id iλ
= − ≥ =             (2.1.7)

		                
 	 1 0

10

ndL
idx i
λ= − ≤∑

=
	      (2.1.8)

		          
0 , 1,...,0

dL g i ni idxi
λ λ= − ≤ =             (2.1.9)

Karush Kuhn Tucker conditions in general problems

In general problems, we may have different numbers of decision 
variables and constraints. Furthermore, the elements cij i j≠

 are not 
necessarily zero (Table 1).

Table 1 Karush Kuhn Tucker conditions in general maximization problems

0i iλ ≥ ∀ 0
i

dL i
dλ

≥ ∀ 0i
i

dL i
d

λ
λ

= ∀

0jx j≥ ∀ 0
j

dL j
dx

≤ ∀ 0j
j

dLx j
dx

= ∀

Particular conditions in problems that satisfy (2.1) and 
(2.2)

Note that in these problems, i j=  in all relevant constraints.

		                  
0 iiλ ≥ ∀

		      
 (2.1.10)

		                 
0dL i

d iλ
≥ ∀  	                      (2.1.11)

		                
0dL ii d i

λ
λ

= ∀  		       (2.1.12)

			 
0x ii ≥ ∀  		       (2.1.13)

			 
0dL i

dxi
≤ ∀  		       (2.1.14)

			 
0dLx ii dxi

= ∀
		      

 (2.1.15)

Proof 1: Proof that * 00x > :

(2.1.2) and (2.1.4) make it feasible to let 0 , 1,...x i ni > = .

(2.2) says that 0 , 1,2,...,ig i n> =  .

When 0, 1,...i ig x i n> =  , (2.1.3) makes it feasible to let 00x > .

(2.1.1) states that we want to maximize 0x . Let stars indicate 
optimal values.

Hence, when optimal decisions are taken, * 00 0x x= >  .

Proof 2: Proof that * 0 , 1,...,x i ni > = :

(2.1.7) says that 0 0 , 1,...,i i
i

dL g x x i n
dλ

= − ≥ =

Proof 1 states that 0 0x > . (2.2) says that 0 , 1,...,g i ni > = .
0 0 , 1,...,

x
x i ni gi
≥ > = .

Hence, * 0 , 0,...,x x i ni i= > = . 

Proof 3: Proof that *, 0,...,i niλ =  can be determined from a linear 
equation system.

( )0 , 0,...,x i ni > = ∧
 
(2.1.15) ⇒  0 ; 0 , 1,...,

0

dL dL i n
dx dxi

  = = = 
    { }  (2.1.17)(2.1.16)= ∧ .

                   
1 0

10

ndL
idx i
λ= − =∑

=
 		                  (2.1.16)

             
0 , 1,...,0

dL g i ni idxi
λ λ= − = =  		  (2.1.17)

Proof 4: Proof that * 0 , 0,...,i i nλ > = .

(2.1.16) ⇒ 0, 0i i
i λ> >

∃ .

Hence, at least for one strictly positive value i , iλ is strictly 
greater than zero.

      
( )0, 0i i iλ
∃ > > ∧ ( )0 , 1,...,g i ni > = ∧  (2.1.17) ⇒ 0 0λ > .

		  0 0λ >  			                   (2.1.18)

(2.1.17) ∧ ( )0 , 1,...,ig i n> = ∧  (2.1.18) ⇒ ( )0 , 1,...,i niλ > =

		
0 , 1,...,i niλ > =

		                
 (2.1.19)

	 (2.1.18) ∧  (2.1.19) ⇒ ( )0 , 0,...,i niλ > =

		
* 0 , 0,...,i niλ > =

		                
 (2.1.20)

Proof 5: Proof that * , 1,...,x i ni = , can be determined from a linear 
equation system.

( )0 , 0,...,i niλ > = ∧  (2.1.12) ⇒  

0 ; 0 , 1,...,
0

dL dL i n
d d iλ λ

  = = = 
    

{ }  (2.1.22)(2.1.21)= ∧ .
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1 0

10

ndL xid iλ
= − =∑

=
 	                  (2.1.21)

		
0 , 1,...,0

dL g x x i ni id iλ
= − = =

              
 (2.1.22)

Determination of explicit equations that give all 
values: * , 0,...,x i ni =  :

		  (2.1.22) ⇒  (2.1.23).

		
 0 , 1,...,

x
x i ni gi
= = 			  (2.1.23)

		  (2.1.21) ⇒  (2.1.24).

		        1
1

n

i
i

x
=

=∑  			   (2.1.24)

		       

0 1
1

n x
gi i

=∑
= 			 

(2.1.25)

		       

1 1
1 0

n
g xi i

=∑
= 			 

(2.1.26)

		       

1
0 1

1

x n
gi i

=
∑
=

 			   (2.1.27)

		    

1
* 1

0
1

n

i
i

x g
−

−

=

 
=  
 
∑  			  (2.1.28)

                      

1
* 1 1 , 1,...,

1

n
x g g i nqi i q

−
 − −= =∑  =         

 (2.1.29)

Determination of explicit equations that give all 
values: * , 0,...,i niλ = :

		       (2.1.17) ⇒  (2.1.30).

		        
 0 , 1,...,i ni gi

λ
λ = = 	                 (2.1.30)

		      (2.1.16) ⇒  (2.1.31)

			   1
1

n

i
i
λ

=

=∑  		  (2.1.31)

		
			 

0 1
1

n
gi i

λ
=∑

=
 		  (2.1.32)

			 

1 1
1 0

n
gi i λ

=∑
=

 		  (2.1.33)

			 

1
0 1

1

n
gi i

λ =
∑
=

 		  (2.1.34)

	
		              

1
* 1

0 1

n
gii

λ
−

 −= ∑ 
 =

 		  (2.1.35)

		

1
* 1 1 , 1,...,

1

n
g g i nqi i q

λ
−

 − −= =∑  = 
 	 (2.1.36)

Observations:

		

1
* * 1

0 0 1

n
x gii

λ
−

 −= = ∑ 
 = 	                 

 (2.1.37)

           

1
* * 1 1 , 1,...,

1

n
x g g i nqi i i q

λ
−

 − −= = =∑  =     
       (2.1.38)

The minimization problem of RED

We are interested in the solution to min 0y . The objective function 
is formulated as ( )max 0y− . The frequences of the different decisions, 
i  are yi  . 

			   ( )max 0y−
		

 (2.2.1)

s.t.

			   1
1

n

i
i

y
=

≥∑  		  (2.2.2)

		            0 , 1,...,i iy g y i n≥ = 		  (2.2.3)

		              0 , 1,...,iy i n≥ =  		  (2.2.4)

Proof that *
0 0y >

		            (2.2.2) ⇒  (2.2.5).

		              1 , 0i n yi
i

≤ ≤ >
∃  		  (2.2.5)

		           0 , 1,...,ig i n> =  		  (2.2.6)

	          (2.2.3) ∧  (2.2.5) ⇒  (2.2.6) ⇒  (2.2.7).

			 
*

0 0 0y y≥ >  		  (2.2.7)

Let iµ  denote dual variables. The following Lagrange function is 
defined for RED:

             
( )2 0 0 0

1 1
1

n n

i i i i
i i

L y y y g yµ µ
= =

 
= − + − + − 

 
∑ ∑     (2.2.8)

 These derivatives will be needed in the analysis:

		         

2

10
1 0

n

i
i

dL y
dµ =

= − ≥∑
		

 (2.2.9)

                  
	               2

0 0 , 1,...,i i
i

dL y g y i n
dµ

= − ≥ =      	  (2.2.10)

                            
	                     2

10
1 0

n

i
i

dL
dy

µ
=

= − + ≤∑    		   (2.2.11)

                        
                      2

0 0 , 1,...,i i
i

dL g i n
dy

µ µ= − ≤ =   		    	
						      (2.2.12)
Proof that * 0 , 0,...,iy i n> =

According to (2.2.1), we want to maximize 0y−  , which implies 
that we minimize 0y .

		  (2.2.2) ⇒  
1

1
n

i
i

y
=

≥∑
		  (2.2.4) ⇒ 0 , 1,...,iy i n≥ =

Let us start from an infeasible point, origo, and move to a feasible 
point in the way that keeps 0y as low as possible. Initially, let 
( )1,..., (0,...,0)ny y =  . According to (2.2.2), this point is not feasible.

		  (2.2.3) ⇒ 0 0 , 1,...,min 0y i ni
y

= =
= .

https://doi.org/10.15406/iratj.2019.05.00193


Optimal decisions and expected values in two player zero sum games with diagonal game matrixes-
explicit functions, general proofs and effects of parameter estimation errors 

190
Copyright:

©2019 Lohmander

Citation: Lohmander P. Optimal decisions and expected values in two player zero sum games with diagonal game matrixes-explicit functions, general proofs 
and effects of parameter estimation errors. Int Rob Auto J. 2019;5(5):186‒198. DOI: 10.15406/iratj.2019.05.00193

Now, we have to move away from the infeasible point 

( )1,..., (0,...,0)ny y =  . We have to reach a point that satisfies 

1
1

n

i
i

y
=

≥∑  without increasing 0y more than necessary. To find a point 

that satisfies (2.2.2), we have to increase the value of at least one of 
the { }1,...,i i ny

∈
. Select one arbitrary index 1 k nk

≤ ≤
 . To simplify the 

exposition, we let 1k = . According to (2.2.3): If we increase 1y
by 1dy , 0min y  increases by 1 1g dy , as long as 0 , 2,...,idy i n= = . 
Hence, 0 1 1dy g dy=  . Let 0 1 1z dy g dy= = .

However, when 1 0dy > , we may also partly increase 
, 2,...,iy i n=  without increasing 0dy  above z . This follows from 

(2.2.3) and (2.2.10). Since we want to satisfy 
1

1
n

i
i

y
=

≥∑ , we want to 

increase , 2,...,iy i n=  as much as possible, without increasing 0dy  
above z . Hence, we select:

                      1 1 , 2,...,i ig dy z g dy i n= = =                         (2.2.13)

		
 1

1 , 2,...,i
i

gdy dy i n
g

= = 		      (2.2.14)

  ( ) ( )1 0 0 , 1,..., 0 , 2,...,i idy g i n dy i n> ∧ > = ⇒ > =
 
      (2.2.15)

Since we started in origo, we have

		  0 0 , 1,...,i iy dy i n= + > =  		      (2.2.16)

We already know that *
0 0 0y y≥ > . Hence,.

		    
* 0 , 0,...,iy i n> =  		      (2.2.17)

Observation: The following direct method can be used to solve 
the optimization problem of RED.

First, remember that * *
0 0 0y dy z= + = . We may directly determine 

the optimal values of * 0 , 0,...,iy i n> =  without using the Lagrange 
function and KKT conditions, in this way:

            ( ) ( ) ( )( )1 2
1

0 0 ... 0 1
n

i n
i

y dy dy dy
=

= + + + + + =∑     (2.2.18)

	        
( )1 2

1
... 1

n

i n
i

y y y y
=

= + + + =∑                              (2.2.19)

     

1 1

1 1 2 1 1
... 1

n

i
i n

z g z g zy
g g g g g=

   
= + + + =        

∑                    (2.2.20)

            1 1 2
... 1

n

i
i n

z z zy
g g g=

 
= + + + = 
 

∑                              (2.2.21)

           1 1 2

1 1 1 1...
n

i
i n

y
g g g z=

 
= + + + = 
 

∑                              (2.2.22)

                         

1

1

1n

i
i

g
z

−

=

=∑
                                              

 (2.2.23)

                  

1
* 1

0
1

n

i
i

y z g
−

−

=

 
= =  

 
∑                                        (2.2.24)

     
        

1
* 1 * 1 1

0
1

, 1,...,
n

i i i q
q

y g y g g i n
−

− − −

=

 
= = =  

 
∑            (2.2.25)

Proof that * , 0,...,i i nµ =  can be solved via a linear 
equation system and that * 0 , 0,...,i i nµ > = .

Since * 0 , 0,...,iy i n> = , we may determine that * 0 , 0,...,i i nµ > =  
via a linear equation system.

( )2 20 , 0,..., 0 , 0,..., 0 , 0,...,i i
i i

dL dLy i n y i n i n
dy dy

   
= = ∧ > = ⇒ = =   

   

		

2

10
1 0

n

q
q

dL
dy

µ
=

= − + =∑  	                     (2.2.26)

		

2
0 0 , 1,...,i i

i

dL g i n
dy

µ µ= − = =  	     (2.2.27)

		  (2.2.26)⇒  1 , 0i n i
i µ≤ ≤ >

∃  (2.2.28)

( )0 , 1,...,ig i n> = ∧ (2.2.27) ∧  (2.2.28) 0 0µ⇒ >               (2.2.29)

( )0 , 1,...,ig i n> = ∧ (2.2.27) ∧  (2.2.29) ( )0 , 1,...,i i nµ⇒ > =  

						            (2.2.30) 

              (2.2.29) ∧  (2.2.30) ( )0 , 0,...,i i nµ⇒ > =                (2.2.31)

Proof that * , 0,...,iy i n=  can be solved via a linear 
equation system and that * 0 , 0,...,iy i n> = .

Since * 0 , 0,...,i i nµ > = , we may determine that * 0 , 0,...,iy i n> =  
via a linear equation system.

( )2 20 , 0,..., 0 , 0,..., 0 , 0,...,i i
i i

dL dLi n i n i n
d d

µ µ
µ µ

   
= = ∧ > = ⇒ = =   

   

		    
 2

10
1 0

n

q
q

dL y
dµ =

= − =∑ 	                      (2.2.32)

		

2
0 0 , 1,...,i i

i

dL y g y i n
dµ

= − = =  	       (2.2.33)

		  (2.2.32) 1 , 0i n yi
i

≤ ≤ >
⇒ ∃

 
(2.2.34)

	          ( )0 , 1,...,ig i n> = ∧ (2.2.33) 0 0y⇒ >   	      (2.2.35)

         ( )0 , 1,...,ig i n> = ∧ (2.2.35) ( )0 , 1,...,iy i n⇒ > =  (2.2.36)

            (2.2.35) ∧ (2.2.36) ( )0 , 0,...,iy i n⇒ > =                (2.2.37)

Determination of explicit equations that give all 
values: * , 0,...,iy i n=  :

		      (2.2.33) ⇒ (2.2.38).

		     
 0 , 1,...,i

i

yy i n
g

= = 	    	      (2.2.38)

		  (2.2.32) ⇒  (2.2.39).

		         1
1

n

i
i

y
=

=∑  			         (2.2.39)

		        

0

1
1

n

i i

y
g=

=∑  			        (2.2.40)

		       1 0

1 1n

i ig y=

=∑  			          (2.2.41)

https://doi.org/10.15406/iratj.2019.05.00193


Optimal decisions and expected values in two player zero sum games with diagonal game matrixes-
explicit functions, general proofs and effects of parameter estimation errors 

191
Copyright:

©2019 Lohmander

Citation: Lohmander P. Optimal decisions and expected values in two player zero sum games with diagonal game matrixes-explicit functions, general proofs 
and effects of parameter estimation errors. Int Rob Auto J. 2019;5(5):186‒198. DOI: 10.15406/iratj.2019.05.00193

		       

 			        (2.2.42)

		     

1
* 1

0
1

n

i
i

y g
−

−

=

 
=  
 
∑  		       (2.2.43)

                     

1
* 1 1

1
, 1,...,

n

i i q
q

y g g i n
−

− −

=

 
= =  

 
∑  	  (2.2.44)

Determination of explicit equations that give all 
values: * , 0,...,i i nµ = :

		    (2.2.27) ⇒ (2.2.45).

		     

0 , 1,...,i
i

i n
g
µµ = =  		   (2.2.45)

		    (2.2.26) ⇒  (2.2.46)

		          1
1

n

i
i

µ
=

=∑  			    (2.2.46)

		          

0

1
1

n

i ig
µ

=

=∑
			 

 (2.2.47)

		          1 0

1 1n

i ig µ=

=∑  			    (2.2.48)

		          

0

1

1
1n

ii g

µ

=

=

∑
 			    (2.2.49)

		         

1
* 1

0
1

n

i
i

gµ
−

−

=

 
=  
 
∑  		   (2.2.50)

		

1
* 1 1

1
, 1,...,

n

i i q
q

g g i nµ
−

− −

=

 
= =  

 
∑  	  (2.2.51)

Observations:

		          
1

* * 1
0 0

1

n

i
i

y gµ
−

−

=

 
= =  

 
∑  		  (2.2.52)

		

1
* * 1 1

1
, 1,...,

n

i i i q
q

y g g i nµ
−

− −

=

 
= = =  

 
∑      (2.2.53)

Generalized Observations:

		      

1
* * * * 1

0 0 0 0
1

n

i
i

x y gλ µ
−

−

=

 
= = = =  

 
∑  	   (2.2.54)

            

1
* * * * 1 1

1
, 1,...,

n

i i i i i q
q

x y g g i nλ µ
−

− −

=

 
= = = = =  

 
∑

 
(2.2.55)

Observations:

 		          
1

* * 1
0 0

1

n

i
i

y gµ
−

−

=

 
= =  

 
∑  		   (2.2.52)

		    

1
* * 1 1

1
, 1,...,

n

i i i q
q

y g g i nµ
−

− −

=

 
= = =  

 
∑  	  (2.2.53)

Generalized Observations:

		    

1
* * * * 1

0 0 0 0
1

n

i
i

x y gλ µ
−

−

=

 
= = = =  

 
∑          (2.2.54)

              

1
* * * * 1 1

1
, 1,...,

n

i i i i i q
q

x y g g i nλ µ
−

− −

=

 
= = = = =  

 
∑  (2.2.55)

Sensitivity analyses

First, the sensitivity analyses will concern these variables: 
* * * *

0 0 0 0x yλ µ= = = . How do these variables change under the 
influence of changing elements in the game matrix? 

Observation: 
1

* * * * 1
0 0 0 0

1

n

i
i

x y gλ µ
−

−

=

 
= = = =  

 
∑

Proof that 
* 2 *

0 0
20 0

i i

dx d x
dg dg

> ∧ < .

		           

1
* 1

0
1

n

i
i

x g
−

−

=

 
=  
 
∑  		         (2.3.1)

		
 ( )

2*
1 20

1
( 1)

n

i i
ii

dx g g
dg

−
− −

=

 
= − − 

 
∑                      (2.3.2)

		      

2*
2 10

1
0

n

i i
ii

dx g g
dg

−
− −

=

 
= > 

 
∑  	        (2.3.3)

( )
2 32 *

3 1 2 1 20
2

1 1
2 ( 2) 1

n n

i i i i i
i ii

d x g g g g g
dg

− −
− − − − −

= =

   
= − + − −   

   
∑ ∑  (2.3.4)

               

2 12 *
3 1 1 10

2
1 1

2 1
n n

i i i i
i ii

d x g g g g
dg

− −
− − − −

= =

     = − −        
∑ ∑   (2.3.5)

		     
( ) ( )

2 * 21 * *0
2 2 1i i i

i

d x g x x
dg

−= − −  	        (2.3.6)

		
( ) ( )

2 *
* 0

20 1 0 0i i
i

d xx g
dg

< < ∧ > ⇒ <  	         (2.3.7)

Observation: *
0x is a strictly increasing and strictly concave function 

of each ig . From the Jensen inequality, it follows that increasing risk 
in ig will reduce the expected value of *

0x . Compare Figure 1.

Second, the sensitivity analyses will concern these variables: 
* * * * , 1,...,i i i ix y i nλ µ= = = = . How do these variables change under 

the influence of changing elements in the game matrix? 

Observation: 
1

* * * * 1 1

1
, 1,...,

n

i i i i i q
q

x y g g i nλ µ
−

− −

=

 
= = = = =  

 
∑

Proof that { }
* 2 *

20 0 , 1,...,i i

i i

dx d x i n
dg dg

< ∧ > ∈ .

		

1
* 1 1

1
, 1,...,

n

i i q
q

x g g i n
−

− −

=

 
= =  

 
∑  	        (2.3.8)

    
( )

1 2*
2 1 1 1 2

1 1
( 1)

n n
i

i q i q q
q qi

dx g g g g g
dg

− −

− − − − −

= =

   
= − + − −      

   
∑ ∑   (2.3.9)

           

1 1*
2 1 1 1

1 1
1

n n
i

i q i q
q qi

dx g g g g
dg

− −

− − − −

= =

     = − +           
∑ ∑  	        (2.3.10)

		
( )

*
1 * *1i

i i i
i

dx g x x
dg

−= − +  		        (2.3.11)

0

1

1
1n

ii

y

g=

=

∑
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( ) ( )

*
*0 0 1 0i

i i
i

dxg x
dg

> ∧ < < ⇒ <  	       (2.3.12)

( ) ( )( )( ) ( )
2 *

2 * * 1 1 * * * 1 * 1 * *
2 1 1 1 1i

i i i i i i i i i i i i i
i

d x g x x g g x x x g x g x x
dg

− − − − −= − − + − − + −  

						       (2.3.13)

( ) ( )( )( ) ( )( )
2 *

2 * * * * * * * *
2 1 1 1 1i

i i i i i i i i i
i

d x g x x x x x x x x
dg

−= − − − − − − − 	  

                                                                                               (2.3.14)

( ) ( ) ( ) ( )
2 * 2 2 22 * * * * * * *

2 2 1 1i
i i i i i i i i

i

d x g x x x x x x x
dg

−   = − − − − + − −    
 

						      (2.3.15)

( ) ( ) ( ) ( ) ( )
2 * 2 3 2 3 22 * * * * * * *

2 2i
i i i i i i i i

i

d x g x x x x x x x
dg

−  = − − − + − − + 
 

 

						      (2.3.16)

             
( ) ( )

2 * 3 22 * * *
2 2 4 2i

i i i i
i

d x g x x x
dg

−  = − − + − 
 

        (2.3.17)

	            
( )

2 * 22 * * *
2 2 2 1i

i i i i
i

d x g x x x
dg

−  = − + 
 

 	 (2.3.18)

		
( )

2 * 22 * *
2 2 1i

i i i
i

d x g x x
dg

−= −  		  (2.3.19)

	           
( ) ( )

2 *
*

20 0 1 0i
i i

i

d xg x
dg

≠ ∧ < < ⇒ >  	 (2.3.20)

Observation: *
ix is a strictly decreasing and strictly convex function 

of ig . From the Jensen inequality, it follows that increasing risk in ig  
will increase the expected value of *

ix . Compare Figure 2.

Proof that { } { }
* 2 *

20 0 , 1,..., , 1,..., ,k k

i i

dx d x i n k n i k
dg dg

> ∧ < ∈ ∈ ≠ .

		        

1
* 1 1

1

n

k k i
i

x g g
−

− −

=

 
=  

 
∑

		    
 (2.3.21)

		
( ) ( )

2*
1 1 2

1
1

n
k

k i i
ii i k

dx g g g
dg

−
− − −

=≠

 
= − − 

 
∑  	    (2.3.22)

		       

2*
1 2 1

1

n
k

k i i
ii i k

dx g g g
dg

−
− − −

=≠

 
=  

 
∑  	     (2.3.23)

		
( )

*
0 , 1..., ) 0k

m
i i k

dxg m n
dg ≠

> = ⇒ >  	     (2.3.24)

( )
2 32 *

1 3 1 2 1 2
2

1 1
2 ( 2)

n n
k

k i i i i i
i ii i k

d x g g g g g g
dg

− −
− − − − − −

= =≠

     = − + − −        
∑ ∑  

						           (2.3.25)

( )
2 12 *

1 3 1 1 1
2

1 1
2 1

n n
k

k i i i i
i ii i k

d x g g g g g
dg

− −
− − − − −

= =≠

     = −        
∑ ∑     (2.3.26)

		
( ) ( )

2 * 21 1 * *
2 2 1k

k i i i
i i k

d x g g x x
dg

− −

≠

= −

	     

 (2.3.27)

	
( ) ( )

2 *
*

20 , 1,..., 0 1 0k
m i

i i k

d xg m n x
dg ≠

> = ∧ < < ⇒ <

   

 (2.3.28)

Observation: *
kx is a strictly increasing and strictly concave function 

of ig . From the Jensen inequality, it follows that increasing risk in ig  
will decrease the expected value of *

kx . Compare Figure 3.

Numerical illustration
The general definition of the following illustrating game is given 

in the preceeding section. Let n =2. A very detailed background and 
interpretation of this particular game, without the new functions and 
proofs, is given in Lohmander (2019).14

		

1

2

0 2 0
0 0 3
g

A
g

   
= =   

  
 		      (3.1)

From (2.2.54) we know that: 

	           

1
* * * * 1

0 0 0 0
1

n

i
i

x y gλ µ
−

−

=

 
= = = =  

 
∑

	    
 (3.2)

*
0x , the expected reward of BLUE, is equal to *

0y , the expected 
loss of RED, in case both optimize the respective strategies. Using the 
numerical values of the elements in A , we get:

		

*
0

1 6 1.21 1 5
2 3

x = = =
+

 		     (3.3)

Hence, the expected value of the game is 1.2. This value is also 
shown in Figure 4. and Figure 5. The expected value of the game is a 
decreasing function of the level of risk of 1g , which is described in 
connection to, and illustrated in, Figure 1.

From (2.2.55) we know that:

	

1
* * * * 1 1

1
, 1,...,

n

i i i i i q
q

x y g g i nλ µ
−

− −

=

 
= = = = =  

 
∑      (3.4)

For BLUE and RED, the optimal probabilities to select different 
roads are equal. For BLUE, the optimal probability to select road 1 is 

*
1x . Via the elements in A , we get: 

		

* * *
1 1 0

1 0.6
2

x y x = = = 
  		    

 (3.5)

		

* * *
2 2 0

1 0.4
3

x y x = = = 
 

 		     (3.6)

*
1x  is shown in Figures 6 & 7. In Figure 8, the optimal value is 

illustrated. The expected value of *
1x is an increasing function of the 

level of risk in 1g , which is shown in Figure 2. For BLUE, the optimal 
probability to select road 2, is *

2x . In Figure 9, we find this value is 
0.4. Figure 3 illustrates that the expected value of *

2x is a decreasing 
function of the level of risk in 1g .

The particular results ( )* * *
0 1 2, ,x x x discussed in this in this section 

were also obtained by Lohmander (2019)14 via the traditional game 
theory approach of linear programming. 
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Figure 1 In this graph, the horizontal axes represents 1( )E g , the expected value of 1g . Here, 1g  is a stochastic variable. There are two possible outcomes, 
namely 1( ) 1E g −  and 1( ) 1E g + , with probabilities ½ and ½ respectively. The vertical axes shows ( )*

0 1( )x E g , the optimal objective function value as a 
function of the expected value of 1g , and ( )*

0 1( )E x g , the expected value of the optimal objective function value of *
0x as a function of the value of 1g . The 

graph also includes a linear approximation of ( )*
0 1( )x E g based on the values of *

0 1( ( ))x E g for 1( ) 1E g =  and for 1( ) 3E g = . This linear approximation is 
equal to ( )*

0 1( )E x g for 1( ) 2E g = . According to the Jensen inequality, ( )*
0 1( )E x g < ( )*

0 1( )x E g , when *
0 1( ( ))x E g  is a strictly concave function and 1g  

is a stochastic variable. This graph illustrates that the Jensen inequality is correct. The graph also illustrates the general conclusion that the expected optimal 
objective function value ( )*

0 1( )E x g  is a strictly decreasing function of the level of risk in 1g .

Figure 2 In this graph, the horizontal axes represents 1( )E g , the expected value of 1g . Here, 1g  is a stochastic variable. There are two possible outcomes, 
namely 1( ) 1E g −  and 1( ) 1E g + , with probabilities ½ and ½ respectively. The vertical axes shows the optimal decision frequency ( )*

1 1( )x E g  as a function 
of the expected value of 1g , and ( )*

1 1( )E x g , the expected value of the optimal frequency 
*

1x as a function of the value of 1g . The graph also includes a 
linear approximation of ( )*

1 1( )x E g based on the values of ( )*
1 1( )x E g for 1( ) 1E g =  and for 1( ) 3E g = . This linear approximation is equal to ( )*

1 1( )E x g
for 1( ) 2E g = . According to the Jensen inequality, ( )*

1 1( )E x g >  ( )*
1 1( )x E g , when *

1 1( ( ))x E g  is a strictly convex function and 1g  is a stochastic variable. 
This graph illustrates that the Jensen inequality is correct. The graph also illustrates the general conclusion that the expected optimal decision frequency 

( )*
1 1( )E x g  is a strictly increasing function of the level of risk in 1g .
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Figure 3 In this graph, the horizontal axes represents 1( )E g , the expected value of 1g . Here, 1g  is a stochastic variable. There are two possible outcomes, 

namely 1( ) 1E g −  and 1( ) 1E g + , with probabilities ½ and ½ respectively. The vertical axes shows the optimal decision frequency ( )*
2 1( )x E g  as a function 

of the expected value of 1g , and ( )*
2 1( )E x g , the expected value of the optimal frequency *

2x as a function of the value of 1g . The graph also includes a linear 

approximation of ( )*
2 1( )x E g based on the values of *

2 1( ( ))x E g for 1( ) 1E g =  and for 1( ) 3E g = . This linear approximation is equal to ( )*
2 1( )E x g for 

1( ) 2E g = . According to the Jensen inequality, ( )*
2 1( )E x g <  ( )*

2 1( )x E g , when *
2 1( ( ))x E g  is a strictly concave function and 1g  is a stochastic variable. 

This graph illustrates that the Jensen inequality is correct. The graph also illustrates the general conclusion that the expected optimal decision frequency 

( )*
2 1( )E x g  is a strictly decreasing function of the level of risk in 1g .

Figure 4 The objective function value *
0x as a function of the two parameters ( )1 2,g g . *

0x is a strictly increasing function of both parameters. 
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Figure 5 The optimal objective function value *
0x as a function of the parameter 1g  for alternative values of 2g . *

0x is a strictly increasing and strictly concave 
function of 1g . Furthermore, *

0x is an increasing function of 2g .

Figure 6 The optimal decision frequency *
1x , as a function of the two parameters ( )1 2,g g . *

1x is a strictly decreasing and strictly convex function of 1g . *
1x

is a strictly increasing and strictly concave function of 2g . 
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Figure 7 The optimal decision frequency *
1x , as a function of the two parameters ( )1 2,g g . *

1x is a strictly decreasing and strictly convex function of 1g . *
1x

is a strictly increasing and strictly concave function of 2g .  Compare Figure 4., which shows the function from another angle.

Figure 8 The optimal decision frequency *
1x as a function of the parameter 1g  for alternative values of 2g . *

1x is a strictly decreasing and strictly convex 
function of 1g . Furthermore, *

1x is an increasing function of 2g .
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Figure 9 The optimal decision frequency *
2x as a function of the parameter 1g  for alternative values of 2g . *

2x is a strictly increasing and strictly concave 

function of 1g . Furthermore, *
2x is an decreasing function of 2g .

Conclusion
In this paper, the two player zero sum games with diagonal game 

matrixes, TPZSGD, are analyzed. Many important applications of 
this particular class of games are found in military decision problems, 
in customs and immigration strategies and police work. Explicit 
functions are derived that give the optimal frequences of different 
decisions and the expected results of relevance to the different decision 
makers. Arbitrary numbers of decision alternatives are covered. 
It is proved that the derived optimal decision frequency formulas 
correspond to the unique optimization results of the two players. It 
is proved that the optimal solutions, for both players, always lead 
to a unique completely mixed strategy Nash equilibrium. For each 
player, the optimal frequency of a particular decision is strictly greater 
than 0 and strictly less than 1. With comparative statics analyses, the 
directions of the changes of optimal decision frequences and expected 
game values as functions of changes in different parameter values, are 
determined. Some of the derived formulas are used to confirm earlier 
game theory results presented in the literature. It is demonstrated that 
the new functions can be applied to solve a typical military decision 
problem and that the new functions make it possible to draw clear 
conclusions concerning issues that were not earlier possible to get via 
linear programming solutions. With the new approach developed here, 
it is possible to determine the directions of change of the expected 
value of the objective function and of the optimal frequences of the 

different decision alternatives, under the influence of increasing risk 
in the game matrix elements. Such game matrix elements are in real 
applications never known with certainty. Hence, this new approach 
leads to more relevant results than those that can be obtained with 
earlier methods. 
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