PL_TPZSG_adjusted_191029_0011

Optimal decisions and expected values in two player zero sum games with diagonal game matrixes - Explicit functions, general proofs and effects of parameter estimation errors
P. Lohmander*

Abstract
	In this paper, the two player zero sum games with diagonal game matrixes, TPZSGD, are analyzed. Many important applications of this particular class of games are found in military decision problems, in customs and immigration strategies and police work. Explicit functions are derived that give the optimal frequences of different decisions and the expected results of relevance to the different decision makers. Arbitrary numbers of decision alternatives are covered. It is proved that the derived optimal decision frequency formulas correspond to the unique optimization results of the two players. It is proved that the optimal solutions, for both players, always lead to a unique completely mixed strategy Nash equilibrium. For each player, the optimal frequency of a particular decision is strictly greater than 0 and strictly less than 1. With comparative statics analyses, the directions of the changes of optimal decision frequences and expected game values as functions of changes in different parameter values, are determined. The signs of the optimal changes of the decision frequences, of the different players, are also determined as functions of risk in different parameter values. Furthermore, the directions of changes of the expected optimal value of the game, are determined as functions of risk in the different parameter values. Finally, some of the derived formulas are used to confirm earlier game theory results presented in the literature. It is demonstrated that the new functions can be applied to solve common military problems.

Keywords: Optimal decisions, Completely mixed strategy Nash equilibrium, Zero sum game theory, Stochastic games.

· Corresponding author

P. Lohmander
Optimal Solutions, Umea, Sweden. e-mail: Peter@Lohmander.com

1 Introduction
What is the optimal strategy of a decision maker, BLUE, such as an individual or organization, when at least one more decision maker, RED, can influence the outcomes? This is a typical question in game theory.
Game theory is a field of research that contains large numbers of studies with different assumptions concerning the number of players, the kinds of decisions that can be taken by the different participants and the degree of information available to the different decision makers at different points in time.
Luce and Raffa (1989) give a general description of most of the game theory literature. Some of the highly important and original publications in the field are Nash (1950), von Neumann (1954) and Dresher (1961). Chiang (1974) covers two person zero sum games and most other methods and theories of general mathematical economics. Isaacs (1965) develops dynamic games with and without stochastic events in continuous and discrete time. In Braun (1983) we find a section where differential equations are used to model and describe the development of games of conflict with several examples of real applications.
Lohmander (2018) contains a new approach to dynamic games of conflict with two players. It includes a stochastic dynamic programming, SDP, model with a linear programming, LP, or quadratic programming, QP, model as a sub routine. The LP or QP can be used to solve static game problems, such as two person zero sum games, TPZSGs, for each state and stage in the SDP model. The outcomes of the repeated games move the positions in state space (change the states to new states) with different transitions probabilities, in the following periods, within the SDP model. The SDP model solves the complete dynamic and stochastic game over a time horizon with several periods.
During the history of game theory, the TPZSGs have always gained considerable theoretical and practical interest. A detailed treatment is given by Luce and Raffa (1989). Several kinds of TPZSGs with large numbers of military applications are well described by Washburn (1994). This can serve as a good introduction to the analysis in this paper. A Nash equilibrium is the normal outcome of LP solutions to TPZSGs. It is however important to be aware that the Nash equilibrium can not always be expected to be the result in real world games. If the strategies of the players are gradually adjusted based on the observations of the decision frequences of the other players, mixed strategy probability orbits (constrained cycles) may develop. Convergence to the Nash equilibrium can not always be expected. Lohmander (1997) has developed a dynamic model and described these possibilities. Herings et al (2004) focuses on stationary equilibria in stochastic games. They are interested in model structure, selection and computation. Babu et al (2017) give a good historical introduction to the literature on stochastic games. They also develop some new results in the area of equilibrium strategies of dynamic games based on mixed strategy assumptions within static games.
In this paper, a particular class of TPZSGs will be analyzed, namely two player zero sum games with diagonal game matrixes were all diagonal elements are strictly positive. Let us denote them TPZSGDs. This may seem to be a highly particular, constrained and irrelevant class of games. However, this is not true. A large number of obvious and economically very important real world applications of this class of games exist, in particular in military applications, in customs problems and in police work. Lohmander (2019) defines, describes and solves four different types of military TPZSGD decision problems with this methodology. These problems include:
· The selection of roads for transport when enemy forces may prepare attacks along different roads with different expected outcomes,
· The selection of roads where attacks on enemy transports should be prepared,
· The positioning of guard squads and
· The positioning of intelligence, reconaissance and sabotage groups.
Game theory literature usually focuses on very general classes of games, without giving special attention to the TPZSG, and the even more specific TPZSGD, classes.
In this paper, explicit functions of the optimal decision frequences and the expected results of relevance to the different players are derived for situations with arbitrary numbers of decision alternatives.
In the earlier game theory literature, when general classes of games are analyzed, it has usually not been possible to derive explicit functions. Earlier studies are mostly focused on general principles, proofs of the existence of solutions and numerical algorithms to calculate solutions in particular numerically specified situations.
One of the general results derived and proved in this paper is that, for every game in the TPZSGD class, the optimal strategy, for both players, always leads to a unique and completely mixed strategy Nash equilibrium. This means that, for each player, the optimal frequency of every possible decision, is strictly greater than 0 and strictly less than 1.
This result is critical to analytical TPZSGD game theory. It makes it possible to instantly determine the equation system that should be used to calculate the optimal decision frequences. Hence, the optimal decision frequences become possible to analyze with general analytical methods. Explicit functions can be derived for arbitrary numbers of decision options and for all possible elements in the game matrix. In other words, we do not have to handle every particular case with numerical methods.

In the existing literature on game theory, such a proof is not easily found. This problem is usually avoided by intuitive arguments and reasonable assumptions. The book by Washburn (1994) is one such example. A similar case is found in Babu et al (2017). They avoid to show that the Nash equilibrium, which they analyze, really is completely mixed. Babu et al (2017) simply assume the existence of a particular probability vector. In this paper, the existence of such a probability vector will be proved for a diagonal game matrix where all diagonal elements are strictly positive. It will also be proved that all elements of the probability vector are strictly positive and strictly less than one. Furthermore, explicit functions will be derived for and the value of the game.
Thanks to the derived functions, it is also possible to perform explicit sensitivity analyses and to determine the directions of changes of optimal decision frequences and expected results if the direction of change of a particular parameter is known.
In this study, it has been possible to derive explicit results in an area that is highly relevant in real applications: How are the optimal decision frequences of the different players changed if the level of risk of some parameter(s) change(s)? Related results have earlier been derived in stochastic dynamic ”one player” problems by Lohmander (1988). First, relevant functions of decisions and expected game values are determined. The first and second derivatives are determined and signed. Then, the Jensen inequality is used to determine the directions of change of the optimal decision frequences and expected game values under the influence of increasing risk in the different parameter values.

2 Analysis

A TPZSGD will now be analyzed in the most general way. BLUE is the maximizer, who selects the row, . RED is the minimizer, who selects the column, . The decision of BLUE is not known by RED before RED takes a decision and the decision of RED is not known by BLUE before BLUE takes the decision. The game matrix, , is diagonal. All diagonal elements are strictly positive and represent the reward that BLUE obtains from RED in case . (The reward that BLUE obtains is equal to the loss that RED gets.) In case , the reward is zero. Equations (2.1) and (2.2) define these conditions.

	

	(2.1)

	

	(2.2)

A concrete example is the following: RED should move an army convoy from one city to another. One road, among the existing available roads, should be selected. BLUE wants to destroy as many RED trucks as possible. RED sends the convoy via road and BLUE moves the equipment and troops to road and prepares an attack there. If , BLUE attacks RED and destroys the number of RED trucks found in a diagonal element of the game matrix where . . If BLUE and RED select different roads, no attack takes place and no trucks are destroyed. .

Different roads usually have different properties with respect to slope, curvature, protection, options to hide close to the road and so on. As a consequence, the values of the diagonal elements of the game matrix, , are usually not the same for different values of .

2.1 The maximization problem of BLUE

The maximization problem of BLUE is defined here. The expected reward,, is the objective function, which is found in (2.1.1). The number of possible decisions is and the probability of a particular decision, , is . The total probability can not exceed 1, which is shown in (2.1.2.). is defined in (2.2). Since RED can select any decision , is constrained via (2.1.3). Furthermore, no probability can be negative, which is seen in (2.1.4).
	

	(2.1.1)

	

	(2.1.2)

	

	(2.1.3)

	

	(2.1.4)

Let denote dual variables. The following Lagrange function is defined:
	

	(2.1.5)

The following derivatives will be needed in the proceeding analysis:
	

	(2.1.6)

	

	(2.1.7)

	

	(2.1.8)

	

	(2.1.9)

Karush Kuhn Tucker conditions in general problems

In general problems, we may have different numbers of decision variables and constraints. Furthermore, the elements are not necessarily zero.
Table 1.
Karush Kuhn Tucker conditions in general maximization problems.
	

	

	

	

	

	

Particular conditions in problems that satisfy (2.1) and (2.2).

Note that in these problems, in all relevant constraints.
	

	(2.1.10)

	

	(2.1.11)

	

	(2.1.12)

	

	(2.1.13)

	

	(2.1.14)

	

	(2.1.15)

Proof 1: Proof that :

 (2.1.2) and (2.1.4) make it feasible to let .

(2.2) says that .

When , (2.1.3) makes it feasible to let .

(2.1.1) states that we want to maximize . Let stars indicate optimal values.

Hence, when optimal decisions are taken, .

Proof 2: Proof that :

(2.1.7) says that

Proof 1 states that . (2.2) says that .

.

Hence, .

Proof 3: Proof that can be determined from a linear equation system.

(2.1.15) = (2.1.16) (2.1.17) .
	

	(2.1.16)

	

	(2.1.17)

Proof 4: Proof that .

(2.1.16) .

Hence, at least for one strictly positive value , is strictly greater than zero.

(2.1.17) .
	

	(2.1.18)

(2.1.17) (2.1.18)
	

	(2.1.19)

(2.1.18) (2.1.19)
	

	(2.1.20)

Proof 5: Proof that , can be determined from a linear equation system.

(2.1.12) = (2.1.21) (2.1.22) .
	

	(2.1.21)

	

	(2.1.22)

Determination of explicit equations that give all values: :

(2.1.22) (2.1.23).
	

	(2.1.23)

(2.1.21) (2.1.24).
	

	(2.1.24)

	

	(2.1.25)

	

	(2.1.26)

	

	(2.1.27)

	

	(2.1.28)

	

	(2.1.29)

Determination of explicit equations that give all values: :

(2.1.17) (2.1.30).
	

	(2.1.30)

(2.1.16) (2.1.31)
	

	(2.1.31)

	

	(2.1.32)

	

	(2.1.33)

	

	(2.1.34)

	

	(2.1.35)

	

	(2.1.36)

Observations:
	

	(2.1.37)

	

	(2.1.38)

2.2 The minimization problem of RED

We are interested in the solution to . The objective function is formulated as . The frequences of the different decisions, are .
	

	(2.2.1)

s.t.
	

	(2.2.2)

	

	(2.2.3)

	

	(2.2.4)

Proof that

(2.2.2) (2.2.5).
	

	(2.2.5)

	

	(2.2.6)

(2.2.3) (2.2.5) (2.2.6) (2.2.7).
	

	(2.2.7)

Let denote dual variables. The following Lagrange function is defined for RED:
	

	(2.2.8)

These derivatives will be needed in the analysis:
	

	(2.2.9)

	

	(2.2.10)

	

	(2.2.11)

	

	(2.2.12)

Proof that

According to (2.2.1), we want to maximize , which implies that we minimize .

(2.2.2)

(2.2.4)

Let us start from an infeasible point, origo, and move to a feasible point in the way that keeps as low as possible. Initially, let . According to (2.2.2), this point is not feasible.

(2.2.3) .

Now, we have to move away from the infeasible point . We have to reach a point that satisfies without increasing more than necessary. To find a point that satisfies (2.2.2), we have to increase the value of at least one of the . Select one arbitrary index . To simplify the exposition, we let . According to (2.2.3): If we increase by , increases by , as long as . Hence, . Let .

However, when , we may also partly increase without increasing above . This follows from (2.2.3) and (2.2.10). Since we want to satisfy , we want to increase as much as possible, without increasing above . Hence, we select:
	

	(2.2.13)

	

	(2.2.14)

	

	(2.2.15)

Since we started in origo, we have
	

	(2.2.16)

We already know that . Hence,.
	

	(2.2.17)

Observation:
The following direct method can be used to solve the optimization problem of RED.

First, remember that . We may directly determine the optimal values of without using the Lagrange function and KKT conditions, in this way:
	

	(2.2.18)

	

	(2.2.19)

	

	(2.2.20)

	

	(2.2.21)

	

	(2.2.22)

	

	(2.2.23)

	

	(2.2.24)

	

	(2.2.25)

Proof that can be solved via a linear equation system and that .

Since , we may determine that via a linear equation system.

	

	(2.2.26)

	

	(2.2.27)

	

(2.2.26)
	(2.2.28)

	

(2.2.27) (2.2.28)
	(2.2.29)

	

(2.2.27) (2.2.29)
	(2.2.30)

	

(2.2.29) (2.2.30)
	(2.2.31)

Proof that can be solved via a linear equation system and that .

Since , we may determine that via a linear equation system.

	

	(2.2.32)

	

	(2.2.33)

	
(2.2.32)
	(2.2.34)

	

(2.2.33)
	(2.2.35)

	

(2.2.35)
	(2.2.36)

	

(2.2.35) (2.2.36)
	(2.2.37)

Determination of explicit equations that give all values: :

(2.2.33) (2.2.38).
	

	(2.2.38)

(2.2.32) (2.2.39).
	

	(2.2.39)

	

	(2.2.40)

	

	(2.2.41)

	

	(2.2.42)

	

	(2.2.43)

	

	(2.2.44)

Determination of explicit equations that give all values: :

(2.2.27) (2.2.45).
	

	(2.2.45)

(2.2.26) (2.2.46)
	

	(2.2.46)

	

	(2.2.47)

	

	(2.2.48)

	

	(2.2.49)

	

	(2.2.50)

	

	(2.2.51)

Observations:
	

	(2.2.52)

	

	(2.2.53)

Generalized Observations:
	

	(2.2.54)

	

	(2.2.55)

[bookmark: _GoBack]
2.3 Sensitivity analyses

First, the sensitivity analyses will concern these variables: . How do these variables change under the influence of changing elements in the game matrix?

Observation:

Proof that .
	

	(2.3.1)

	

	(2.3.2)

	

	(2.3.3)

	

	(2.3.4)

	

	(2.3.5)

	

	(2.3.6)

	

	(2.3.7)

Observation:

is a strictly increasing and strictly concave function of each . From the Jensen inequality, it follows that increasing risk in will reduce the expected value of . Compare Figure 3..

Second, the sensitivity analyses will concern these variables: . How do these variables change under the influence of changing elements in the game matrix?

Observation:

Proof that .
	

	(2.3.8)

	

	(2.3.9)

	

	(2.3.10)

	

	(2.3.11)

	

	(2.3.12)

	

	(2.3.13)

	

	(2.3.14)

	

	(2.3.15)

	

	(2.3.16)

	

	(2.3.17)

	

	(2.3.18)

	

	(2.3.19)

	

	(2.3.20)

Observation:

is a strictly decreasing and strictly convex function of. From the Jensen inequality, it follows that increasing risk in will increase the expected value of . Compare Figure 7..

Proof that .
	

	(2.3.21)

	

	(2.3.22)

	

	(2.3.23)

	

	(2.3.24)

	

	(2.3.25)

	

	(2.3.26)

	

	(2.3.27)

	

	(2.3.28)

Observation:

is a strictly increasing and strictly concave function of. From the Jensen inequality, it follows that increasing risk in will decrease the expected value of . Compare Figure 9..

3. Numerical illustration

The general definition of the following illustrating game is given in the preceeding section. Let = 2. A very detailed background and interpretation of this particular game, without the new functions and proofs, is given in Lohmander (2019).
	

	(3.1)

From (2.2.54) we know that:
	

	(3.2)

, the expected reward of BLUE, is equal to , the expected loss of RED, in case both optimize the respective strategies. Using the numerical values of the elements in, we get:
	

	(3.3)

Hence, the expected value of the game is 1.2. This value is also shown in Figure 1. and Figure 2.. The expected value of the game is a decreasing function of the level of risk of , which is described in connection to, and illustrated in, Figure 3.

From (2.2.55) we know that:
	

	(3.4)

For BLUE and RED, the optimal probabilities to select different roads are equal. For BLUE, the optimal probability to select road 1 is . Via the elements in, we get:
	

	(3.5)

	

	(3.6)

 is shown in Figures 4. and 5.. In Figure 6., the optimal value is illustrated. The expected value of is an increasing function of the level of risk in , which is shown in Figure 7. For BLUE, the optimal probability to select road 2, is. In Figure 8., we find this value is 0.4. Figure 9 illustrates that the expected value of is a decreasing function of the level of risk in .

The particular results discussed in this in this section were also obtained by Lohmander (2019) via the traditional game theory approach of linear programming.

4. Conclusions
In this paper, the two player zero sum games with diagonal game matrixes, TPZSGD, are analyzed. Many important applications of this particular class of games are found in military decision problems, in customs and immigration strategies and police work. Explicit functions are derived that give the optimal frequences of different decisions and the expected results of relevance to the different decision makers. Arbitrary numbers of decision alternatives are covered. It is proved that the derived optimal decision frequency formulas correspond to the unique optimization results of the two players. It is proved that the optimal solutions, for both players, always lead to a unique completely mixed strategy Nash equilibrium. For each player, the optimal frequency of a particular decision is strictly greater than 0 and strictly less than 1. With comparative statics analyses, the directions of the changes of optimal decision frequences and expected game values as functions of changes in different parameter values, are determined. Some of the derived formulas are used to confirm earlier game theory results presented in the literature. It is demonstrated that the new functions can be applied to solve a typical military decision problem and that the new functions make it possible to draw clear conclusions concerning issues that were not earlier possible to get via linear programming solutions. With the new approach developed here, it is possible to determine the directions of change of the expected value of the objective function and of the optimal frequences of the different decision alternatives, under the influence of increasing risk in the game matrix elements. Such game matrix elements are in real applications never known with certainty. Hence, this new approach leads to more relevant results than those that can be obtained with earlier methods could.

[image: C:\Users\demo\Desktop\OMS_Graphtext_190829\Fig_1.jpg]
Figure 1.

The objective function value as a function of the two parameters . is a strictly increasing function of both parameters.

[image: C:\Users\demo\Desktop\OMS_Graphtext_190829\Fig_2.jpg]

Figure 2.

The optimal objective function value as a function of the parameter for alternative values of . is a strictly increasing and strictly concave function of . Furthermore, is an increasing function of .

[image: C:\Users\demo\Desktop\OMS_Graphtext_190829\Fig_3.jpg]

Figure 3.

In this graph, the horizontal axes represents , the expected value of . Here, is a stochastic variable. There are two possible outcomes, namely and , with probabilities ½ and ½ respectively. The vertical axes shows , the optimal objective function value as a function of the expected value of , and , the expected value of the optimal objective function value of as a function of the value of . The graph also includes a linear approximation of based on the values of for and for . This linear approximation is equal tofor . According to the Jensen inequality, < , when is a strictly concave function and is a stochastic variable. This graph illustrates that the Jensen inequality is correct. The graph also illustrates the general conclusion that the expected optimal objective function value is a strictly decreasing function of the level of risk in .

[image: C:\Users\demo\Desktop\OMS_Graphtext_190829\Fig_4.jpg]

Figure 4.

The optimal decision frequency , as a function of the two parameters . is a strictly decreasing and strictly convex function of . is a strictly increasing and strictly concave function of.

[image: C:\Users\demo\Desktop\OMS_Graphtext_190829\Fig_5.jpg]

Figure 5.

The optimal decision frequency , as a function of the two parameters . is a strictly decreasing and strictly convex function of . is a strictly increasing and strictly concave function of. Compare Figure 4., which shows the function from another angle.

[image: C:\Users\demo\Desktop\OMS_Graphtext_190829\Fig_6.jpg]

Figure 6.

The optimal decision frequency as a function of the parameter for alternative values of . is a strictly decreasing and strictly convex function of . Furthermore, is an increasing function of .

[image: C:\Users\demo\Desktop\OMS_Graphtext_190829\Fig_7.jpg]

Figure 7.

In this graph, the horizontal axes represents , the expected value of . Here, is a stochastic variable. There are two possible outcomes, namely and , with probabilities ½ and ½ respectively. The vertical axes shows the optimal decision frequency as a function of the expected value of , and , the expected value of the optimal frequency as a function of the value of . The graph also includes a linear approximation of based on the values of for and for . This linear approximation is equal tofor . According to the Jensen inequality, > , when is a strictly convex function and is a stochastic variable. This graph illustrates that the Jensen inequality is correct. The graph also illustrates the general conclusion that the expected optimal decision frequency is a strictly increasing function of the level of risk in .

[image: C:\Users\demo\Desktop\OMS_Graphtext_190829\Fig_8.jpg]

Figure 8.

The optimal decision frequency as a function of the parameter for alternative values of . is a strictly increasing and strictly concave function of . Furthermore, is an decreasing function of .

[image: C:\Users\demo\Desktop\OMS_Graphtext_190829\Fig_9.jpg]

Figure 9.

In this graph, the horizontal axes represents , the expected value of . Here, is a stochastic variable. There are two possible outcomes, namely and , with probabilities ½ and ½ respectively. The vertical axes shows the optimal decision frequency as a function of the expected value of , and , the expected value of the optimal frequency as a function of the value of . The graph also includes a linear approximation of based on the values of for and for . This linear approximation is equal tofor . According to the Jensen inequality, < , when is a strictly concave function and is a stochastic variable. This graph illustrates that the Jensen inequality is correct. The graph also illustrates the general conclusion that the expected optimal decision frequency is a strictly decreasing function of the level of risk in .

References
	1.
	Babu, S., Krishnamurthy, N. & Parthasarathy, T., Stationarity, completely mixed and symmetric optimal and equilibrium strategies in stochastic games, International Journal of Game Theory, 46(3), (2017), 761-782.

	2.
	Braun, M., Differential equations and their applications, Applied mathematical sciences, 15, Springer-Verlag, 3 ed., New York, (1983).

	3.
	Chiang, A.C., Fundamental methods of mathematical economics, 2 ed., Mc-Graw-Hill, Tokyo, Japan, (1974).

	4.
	Dresher, M., Games of strategy, theory and application, RAND Coorporation, Santa Monica, California, USA, (1961).

	5.
	Herings, P.J.J., Peeters, R.J.A.P., Stationary equilibria in stochastic games: Structure, selection and computation, Journal of Economic Theory 118 (2004), 32-60.

	6.
	Isaacs, R., Differential games, a mathematical theory with applications to warfare and pursuit, control and optimization, Wiley, Mineola, New York, (1965).

	7.
	Lohmander, P., Continuous extraction under risk, Systems Analysis- Modeling - Simulation, 5 (2), (1988), 131-151.

	8.
	Lohmander, P., The constrained probability orbit of mixed strategy games with marginal adjustment: General theory and timber market application, Systems Analysis- Modeling - Simulation, 29 (1997), 27-55.

	9.
	Lohmander, P., Applications and mathematical modeling in operations research, in Cao, B.Y. (Ed.), Fuzzy information and engineering and decision, advances in intelligent systems and computing, Springer International Publishing AG, Cham, Switzerland, (2018), 46-53.

	10.
	Lohmander, P., Four central military decision problems, The Royal Swedish Academy of War Sciences, Proceedings and Journal, 2 (2019), 119-133.

	11.
	Luce, R.D., Raiffa, H., Games and decisions, Dover, Mineola, New York, USA, (1989).

	12.
	Nash, J.F., Equilibrium points in n-person games, Proceedings of the National Academy of Sciences, 36, USA, (1950), 48-49.

	13.
	von Neumann J., A numerical method to determine optimum strategy, Naval Research Logistics Quarterly, 1, USA, (1954).

	14.
	Washburn, A.R., Two-person zero-sum games, Institute for Operations Research and the Management Sciences, 2 ed., Linthicum, Maryland, USA, (1994).

image2.wmf
i

oleObject51.bin

image43.wmf
0,1,...

i

xin

>=

oleObject52.bin

image44.wmf
0,1,2,...,

i

gin

>=

oleObject53.bin

image45.wmf
0,1,...

ii

gxin

>=

oleObject54.bin

image46.wmf
0

0

x

>

oleObject55.bin

image47.wmf
0

x

oleObject2.bin

oleObject56.bin

image48.wmf
*

00

0

xx

=>

oleObject57.bin

image49.wmf
W

oleObject58.bin

image50.wmf
*

0,1,...,

i

xin

>=

oleObject59.bin

image51.wmf
0

0,1,...,

ii

i

dL

gxxin

d

l

=-³=

oleObject60.bin

image52.wmf
0

0

x

>

image3.wmf
j

oleObject61.bin

image53.wmf
0,1,...,

i

gin

>=

oleObject62.bin

image54.wmf
0

0,1,...,

i

i

x

xin

g

³>=

oleObject63.bin

image55.wmf
*

0,0,...,

ii

xxin

=>=

oleObject64.bin

oleObject65.bin

image56.wmf
*

,0,...,

i

in

l

=

oleObject66.bin

oleObject3.bin

image57.wmf
(

)

0,0,...,

i

xin

>=Ù

oleObject67.bin

image58.wmf
Þ

oleObject68.bin

image59.wmf
0

0;0,1,...,

i

dLdL

in

dxdx

ìü

===

íý

îþ

oleObject69.bin

image60.wmf
{

oleObject70.bin

image61.wmf
Ù

oleObject71.bin

image4.wmf
(,)

Aij

image62.wmf
}

oleObject72.bin

image63.wmf
1

0

10

n

i

i

dL

dx

l

=

=-=

å

oleObject73.bin

image64.wmf
0

0,1,...,

ii

i

dL

gin

dx

ll

=-==

oleObject74.bin

oleObject75.bin

image65.wmf
*

0,0,...,

i

in

l

>=

oleObject76.bin

image66.wmf
Þ

oleObject4.bin

oleObject77.bin

image67.wmf
0,0

i

i

i

l

>>

$

oleObject78.bin

image68.wmf
i

oleObject79.bin

image69.wmf
i

l

oleObject80.bin

image70.wmf
(

)

0,0

i

i

i

l

>>

$

oleObject81.bin

oleObject82.bin

image5.wmf
(,)

ij

cAij

=

image71.wmf
(

)

0,1,...,

i

gin

>=

oleObject83.bin

oleObject84.bin

oleObject85.bin

image72.wmf
0

0

l

>

oleObject86.bin

oleObject87.bin

oleObject88.bin

image73.wmf
(

)

0,1,...,

i

gin

>=

oleObject89.bin

oleObject5.bin

oleObject90.bin

oleObject91.bin

image74.wmf
(

)

0,1,...,

i

in

l

>=

oleObject92.bin

image75.wmf
0,1,...,

i

in

l

>=

oleObject93.bin

oleObject94.bin

oleObject95.bin

image76.wmf
(

)

0,0,...,

i

in

l

>=

oleObject96.bin

image6.wmf
ij

=

image77.wmf
*

0,0,...,

i

in

l

>=

oleObject97.bin

oleObject98.bin

image78.wmf
*

,1,...,

i

xin

=

oleObject99.bin

image79.wmf
(

)

0,0,...,

i

in

l

>=Ù

oleObject100.bin

image80.wmf
Þ

oleObject101.bin

image81.wmf
0

0;0,1,...,

i

dLdL

in

dd

ll

ìü

===

íý

îþ

oleObject6.bin

oleObject102.bin

oleObject103.bin

oleObject104.bin

oleObject105.bin

image82.wmf
1

0

10

n

i

i

dL

x

d

l

=

=-=

å

oleObject106.bin

image83.wmf
0

0,1,...,

ii

i

dL

gxxin

d

l

=-==

oleObject107.bin

oleObject108.bin

image84.wmf
*

,0,...,

i

xin

=

image7.wmf
ij

¹

oleObject109.bin

image85.wmf
Þ

oleObject110.bin

image86.wmf
0

,1,...,

i

i

x

xin

g

==

oleObject111.bin

image87.wmf
Þ

oleObject112.bin

image88.wmf
1

1

n

i

i

x

=

=

å

oleObject113.bin

image89.wmf
0

1

1

n

i

i

x

g

=

=

å

oleObject7.bin

oleObject114.bin

image90.wmf
1

0

11

n

i

i

gx

=

=

å

oleObject115.bin

image91.wmf
0

1

1

1

n

i

i

x

g

=

=

å

oleObject116.bin

image92.wmf
1

*1

0

1

n

i

i

xg

-

-

=

æö

=

ç÷

èø

å

oleObject117.bin

image93.wmf
1

*11

1

,1,...,

n

iiq

q

xggin

-

--

=

æö

==

ç÷

èø

å

oleObject118.bin

image94.wmf
*

,0,...,

i

in

l

=

image8.wmf
0,1,...,,1,2,...,

ij

ij

cinjn

¹

===

oleObject119.bin

oleObject120.bin

image95.wmf
0

,1,...,

i

i

in

g

l

l

==

oleObject121.bin

oleObject122.bin

image96.wmf
1

1

n

i

i

l

=

=

å

oleObject123.bin

image97.wmf
0

1

1

n

i

i

g

l

=

=

å

oleObject124.bin

image98.wmf
1

0

11

n

i

i

g

l

=

=

å

oleObject8.bin

oleObject125.bin

image99.wmf
0

1

1

1

n

i

i

g

l

=

=

å

oleObject126.bin

image100.wmf
1

*1

0

1

n

i

i

g

l

-

-

=

æö

=

ç÷

èø

å

oleObject127.bin

image101.wmf
1

*11

1

,1,...,

n

iiq

q

ggin

l

-

--

=

æö

==

ç÷

èø

å

oleObject128.bin

image102.wmf
1

**1

00

1

n

i

i

xg

l

-

-

=

æö

==

ç÷

èø

å

oleObject129.bin

image103.wmf
1

**11

1

,1,...,

n

iiiq

q

xggin

l

-

--

=

æö

===

ç÷

èø

å

image9.wmf
0,1,...,,1,2,...,

iji

ij

cginjn

=

=>==

oleObject130.bin

image104.wmf
0

min

y

oleObject131.bin

image105.wmf
(

)

0

max

y

-

oleObject132.bin

image106.wmf
i

oleObject133.bin

image107.wmf
i

y

oleObject134.bin

image108.wmf
(

)

0

max

y

-

oleObject9.bin

oleObject135.bin

image109.wmf
1

1

n

i

i

y

=

³

å

oleObject136.bin

image110.wmf
0

,1,...,

ii

ygyin

³=

oleObject137.bin

image111.wmf
0,1,...,

i

yin

³=

oleObject138.bin

image112.wmf
*

0

0

y

>

oleObject139.bin

image113.wmf
Þ

image10.wmf
n

oleObject140.bin

image114.wmf
1,0

i

iny

i

££>

$

oleObject141.bin

image115.wmf
0,1,...,

i

gin

>=

oleObject142.bin

image116.wmf
Ù

oleObject143.bin

oleObject144.bin

image117.wmf
Þ

oleObject145.bin

oleObject10.bin

image118.wmf
*

00

0

yy

³>

oleObject146.bin

oleObject147.bin

image119.wmf
i

m

oleObject148.bin

image120.wmf
(

)

2000

11

1

nn

iiii

ii

Lyyygy

mm

==

æö

=-+-+-

ç÷

èø

åå

oleObject149.bin

image121.wmf
2

1

0

10

n

i

i

dL

y

d

m

=

=-³

å

oleObject150.bin

image122.wmf
2

0

0,1,...,

ii

i

dL

ygyin

d

m

=-³=

oleObject11.bin

oleObject151.bin

image123.wmf
2

1

0

10

n

i

i

dL

dy

m

=

=-+£

å

oleObject152.bin

image124.wmf
2

0

0,1,...,

ii

i

dL

gin

dy

mm

=-£=

oleObject153.bin

image125.wmf
*

0,0,...,

i

yin

>=

oleObject154.bin

image126.wmf
0

y

-

oleObject155.bin

image127.wmf
0

y

oleObject12.bin

oleObject156.bin

image128.wmf
Þ

oleObject157.bin

image129.wmf
1

1

n

i

i

y

=

³

å

oleObject158.bin

oleObject159.bin

image130.wmf
0,1,...,

i

yin

³=

oleObject160.bin

image131.wmf
0

y

oleObject161.bin

oleObject13.bin

image132.wmf
(

)

1

,...,(0,...,0)

n

yy

=

oleObject162.bin

oleObject163.bin

image133.wmf
0

0,1,...,

min0

i

yin

y

==

=

oleObject164.bin

oleObject165.bin

oleObject166.bin

image134.wmf
0

y

oleObject167.bin

image135.wmf
{

}

1,...,

i

in

y

Î

oleObject14.bin

oleObject168.bin

image136.wmf
1

kn

k

££

oleObject169.bin

image137.wmf
1

k

=

oleObject170.bin

image138.wmf
1

y

oleObject171.bin

image139.wmf
1

dy

oleObject172.bin

image140.wmf
0

min

y

image11.wmf
(,)0

Aijforij

>=

oleObject173.bin

image141.wmf
11

gdy

oleObject174.bin

image142.wmf
0,2,...,

i

dyin

==

oleObject175.bin

image143.wmf
011

dygdy

=

oleObject176.bin

image144.wmf
011

zdygdy

==

oleObject177.bin

image145.wmf
1

0

dy

>

oleObject15.bin

oleObject178.bin

image146.wmf
,2,...,

i

yin

=

oleObject179.bin

image147.wmf
0

dy

oleObject180.bin

image148.wmf
z

oleObject181.bin

oleObject182.bin

image149.wmf
,2,...,

i

yin

=

oleObject183.bin

image12.wmf
(,)0

Aijforij

=¹

oleObject184.bin

oleObject185.bin

image150.wmf
11

,2,...,

ii

gdyzgdyin

===

oleObject186.bin

image151.wmf
1

1

,2,...,

i

i

g

dydyin

g

==

oleObject187.bin

image152.wmf
(

)

(

)

1

00,1,...,0,2,...,

ii

dygindyin

>Ù>=Þ>=

oleObject188.bin

image153.wmf
00,1,...,

ii

ydyin

=+>=

oleObject189.bin

oleObject16.bin

oleObject190.bin

image154.wmf
*

0,0,...,

i

yin

>=

oleObject191.bin

oleObject192.bin

image155.wmf
**

00

0

ydyz

=+=

oleObject193.bin

oleObject194.bin

image156.wmf
(

)

(

)

(

)

(

)

12

1

00...01

n

in

i

ydydydy

=

=+++++=

å

oleObject195.bin

image157.wmf
(

)

12

1

...1

n

in

i

yyyy

=

=+++=

å

oleObject17.bin

oleObject196.bin

image158.wmf
11

1

1211

...1

n

i

i

n

gg

zzz

y

ggggg

=

æö

æö

æö

=+++=

ç÷

ç÷

ç÷

ç÷

èø

èø

èø

å

oleObject197.bin

image159.wmf
1

12

...1

n

i

i

n

zzz

y

ggg

=

æö

=+++=

ç÷

èø

å

oleObject198.bin

image160.wmf
1

12

1111

...

n

i

i

n

y

gggz

=

æö

=+++=

ç÷

èø

å

oleObject199.bin

image161.wmf
1

1

1

n

i

i

g

z

-

=

=

å

oleObject200.bin

image162.wmf
1

*1

0

1

n

i

i

yzg

-

-

=

æö

==

ç÷

èø

å

image13.wmf
i

oleObject201.bin

image163.wmf
1

*1*11

0

1

,1,...,

n

iiiq

q

ygyggin

-

=

æö

===

ç÷

èø

å

oleObject202.bin

image164.wmf
*

,0,...,

i

in

m

=

oleObject203.bin

image165.wmf
*

0,0,...,

i

in

m

>=

oleObject204.bin

oleObject205.bin

oleObject206.bin

image166.wmf
(

)

22

0,0,...,0,0,...,0,0,...,

ii

ii

dLdL

yinyinin

dydy

æöæö

==Ù>=Þ==

ç÷ç÷

èøèø

oleObject18.bin

oleObject207.bin

image167.wmf
2

1

0

10

n

q

q

dL

dy

m

=

=-+=

å

oleObject208.bin

image168.wmf
2

0

0,1,...,

ii

i

dL

gin

dy

mm

=-==

oleObject209.bin

image169.wmf
Þ

oleObject210.bin

image170.wmf
1,0

i

in

i

m

££>

$

oleObject211.bin

image171.wmf
(

)

0,1,...,

i

gin

>=Ù

image14.wmf
0

x

oleObject212.bin

image172.wmf
Ù

oleObject213.bin

image173.wmf
0

0

m

Þ>

oleObject214.bin

oleObject215.bin

oleObject216.bin

image174.wmf
(

)

0,1,...,

i

in

m

Þ>=

oleObject217.bin

image175.wmf
Ù

oleObject19.bin

oleObject218.bin

image176.wmf
(

)

0,0,...,

i

in

m

Þ>=

oleObject219.bin

oleObject220.bin

image177.wmf
*

,0,...,

i

yin

=

oleObject221.bin

image178.wmf
*

0,0,...,

i

yin

>=

oleObject222.bin

image179.wmf
*

0,0,...,

i

in

m

>=

oleObject223.bin

image15.wmf
n

image180.wmf
*

0,0,...,

i

yin

>=

oleObject224.bin

image181.wmf
(

)

22

0,0,...,0,0,...,0,0,...,

ii

ii

dLdL

ininin

dd

mm

mm

æöæö

==Ù>=Þ==

ç÷ç÷

èøèø

oleObject225.bin

image182.wmf
2

1

0

10

n

q

q

dL

y

d

m

=

=-=

å

oleObject226.bin

image183.wmf
2

0

0,1,...,

ii

i

dL

ygyin

d

m

=-==

oleObject227.bin

image184.wmf
1,0

i

iny

i

££>

Þ$

oleObject228.bin

oleObject20.bin

image185.wmf
(

)

0,1,...,

i

gin

>=Ù

oleObject229.bin

image186.wmf
0

0

y

Þ>

oleObject230.bin

oleObject231.bin

image187.wmf
(

)

0,1,...,

i

yin

Þ>=

oleObject232.bin

image188.wmf
Ù

oleObject233.bin

image189.wmf
(

)

0,0,...,

i

yin

Þ>=

image16.wmf
i

oleObject234.bin

oleObject235.bin

image190.wmf
*

,0,...,

i

yin

=

oleObject236.bin

oleObject237.bin

image191.wmf
0

,1,...,

i

i

y

yin

g

==

oleObject238.bin

oleObject239.bin

image192.wmf
1

1

n

i

i

y

=

=

å

oleObject240.bin

oleObject21.bin

image193.wmf
0

1

1

n

i

i

y

g

=

=

å

oleObject241.bin

image194.wmf
1

0

11

n

i

i

gy

=

=

å

oleObject242.bin

image195.wmf
0

1

1

1

n

i

i

y

g

=

=

å

oleObject243.bin

image196.wmf
1

*1

0

1

n

i

i

yg

-

-

=

æö

=

ç÷

èø

å

oleObject244.bin

image197.wmf
1

*11

1

,1,...,

n

iiq

q

yggin

-

--

=

æö

==

ç÷

èø

å

oleObject245.bin

image17.wmf
i

x

image198.wmf
*

,0,...,

i

in

m

=

oleObject246.bin

oleObject247.bin

image199.wmf
0

,1,...,

i

i

in

g

m

m

==

oleObject248.bin

oleObject249.bin

image200.wmf
1

1

n

i

i

m

=

=

å

oleObject250.bin

image201.wmf
0

1

1

n

i

i

g

m

=

=

å

oleObject251.bin

oleObject22.bin

image202.wmf
1

0

11

n

i

i

g

m

=

=

å

oleObject252.bin

image203.wmf
0

1

1

1

n

i

i

g

m

=

=

å

oleObject253.bin

image204.wmf
1

*1

0

1

n

i

i

g

m

-

-

=

æö

=

ç÷

èø

å

oleObject254.bin

image205.wmf
1

*11

1

,1,...,

n

iiq

q

ggin

m

-

--

=

æö

==

ç÷

èø

å

oleObject255.bin

image206.wmf
1

**1

00

1

n

i

i

yg

m

-

-

=

æö

==

ç÷

èø

å

oleObject256.bin

image18.wmf
i

g

image207.wmf
1

**11

1

,1,...,

n

iiiq

q

yggin

m

-

--

=

æö

===

ç÷

èø

å

oleObject257.bin

image208.wmf
1

****1

0000

1

n

i

i

xyg

lm

-

-

=

æö

====

ç÷

èø

å

oleObject258.bin

image209.wmf
1

****11

1

,1,...,

n

iiiiiq

q

xyggin

lm

-

--

=

æö

=====

ç÷

èø

å

oleObject259.bin

image210.wmf

0000

xy

lm

===

oleObject260.bin

oleObject261.bin

image211.wmf
2

00

2

00

ii

dxdx

dgdg

>Ù<

oleObject23.bin

oleObject262.bin

image212.wmf
1

*1

0

1

n

i

i

xg

-

-

=

æö

=

ç÷

èø

å

oleObject263.bin

image213.wmf
(

)

2

*

12

0

1

(1)

n

ii

i

i

dx

gg

dg

-

--

=

æö

=--

ç÷

èø

å

oleObject264.bin

image214.wmf
2

*

21

0

1

0

n

ii

i

i

dx

gg

dg

-

--

=

æö

=>

ç÷

èø

å

oleObject265.bin

image215.wmf
(

)

23

2*

31212

0

2

11

2(2)1

nn

iiiii

ii

i

dx

ggggg

dg

--

==

æöæö

=-+--

ç÷ç÷

èøèø

åå

oleObject266.bin

image216.wmf
21

2*

3111

0

2

11

21

nn

iiii

ii

i

dx

gggg

dg

--

==

æö

æöæö

=--

ç÷

ç÷ç÷

ç÷

èøèø

èø

åå

image19.wmf
j

oleObject267.bin

image217.wmf
(

)

(

)

2*

2

1**

0

2

21

iii

i

dx

gxx

dg

-

=--

oleObject268.bin

image218.wmf
(

)

(

)

2*

*

0

2

0100

ii

i

dx

xg

dg

<<Ù>Þ<

oleObject269.bin

oleObject270.bin

image219.wmf
*

0

x

oleObject271.bin

image220.wmf
i

g

oleObject272.bin

oleObject24.bin

oleObject273.bin

oleObject274.bin

image221.wmf

,1,...,

iiii

xyin

lm

====

oleObject275.bin

oleObject276.bin

image222.wmf
{

}

2

2

00,1,...,

ii

ii

dxdx

in

dgdg

<Ù>Î

oleObject277.bin

image223.wmf
1

*11

1

,1,...,

n

iiq

q

xggin

-

--

=

æö

==

ç÷

èø

å

oleObject278.bin

image224.wmf
(

)

12

*

21112

11

(1)

nn

i

iqiqq

qq

i

dx

ggggg

dg

--

==

æöæö

=-+--

ç÷ç÷

èøèø

åå

oleObject25.bin

oleObject279.bin

image225.wmf
11

*

2111

11

1

nn

i

iqiq

qq

i

dx

gggg

dg

--

==

æö

æöæö

ç÷

=-+

ç÷ç÷

ç÷

èøèø

èø

åå

oleObject280.bin

image226.wmf
(

)

*

1**

1

i

iii

i

dx

gxx

dg

-

=-+

oleObject281.bin

image227.wmf
(

)

(

)

*

*

0010

i

ii

i

dx

gx

dg

>Ù<<Þ<

oleObject282.bin

image228.wmf
(

)

(

)

(

)

(

)

(

)

2*

2**11***1*1**

2

1111

i

iiiiiiiiiiiii

i

dx

gxxggxxxgxgxx

dg

=--+--+-

oleObject283.bin

image229.wmf
(

)

(

)

(

)

(

)

(

)

(

)

2*

2********

2

1111

i

iiiiiiiii

i

dx

gxxxxxxxx

dg

-

=-------

image20.wmf
0

max

x

oleObject284.bin

image230.wmf
(

)

(

)

(

)

(

)

(

)

(

)

2*

222

2*******

2

211

i

iiiiiiii

i

dx

gxxxxxxx

dg

-

=----+--

oleObject285.bin

image231.wmf
(

)

(

)

(

)

(

)

(

)

(

)

2*

23232

2*******

2

2

i

iiiiiiii

i

dx

gxxxxxxx

dg

-

=---+--+

oleObject286.bin

image232.wmf
(

)

(

)

(

)

2*

32

2***

2

242

i

iiii

i

dx

gxxx

dg

-

=--+-

oleObject287.bin

image233.wmf
(

)

(

)

2*

2

2***

2

221

i

iiii

i

dx

gxxx

dg

-

=-+

oleObject288.bin

image234.wmf
(

)

2*

2

2**

2

21

i

iii

i

dx

gxx

dg

-

=-

oleObject26.bin

oleObject289.bin

image235.wmf
(

)

(

)

2*

*

2

0010

i

ii

i

dx

gx

dg

¹Ù<<Þ>

oleObject290.bin

oleObject291.bin

image236.wmf
*

i

x

oleObject292.bin

oleObject293.bin

oleObject294.bin

image237.wmf
*

i

x

oleObject295.bin

image21.wmf
..

st

image238.wmf
{

}

{

}

2

2

00,1,...,,1,...,,

kk

ii

dxdx

inknik

dgdg

>Ù<ÎÎ¹

oleObject296.bin

image239.wmf
1

*11

1

n

kki

i

xgg

-

--

=

æö

=

ç÷

èø

å

oleObject297.bin

image240.wmf
(

)

(

)

2

*

112

1

1

n

k

kii

i

iik

dx

ggg

dg

-

=

¹

æö

=--

ç÷

èø

å

oleObject298.bin

image241.wmf
2

*

121

1

n

k

kii

i

iik

dx

ggg

dg

-

=

¹

æö

=

ç÷

èø

å

oleObject299.bin

image242.wmf
(

)

*

0,1...,)0

k

m

iik

dx

gmn

dg

¹

>=Þ>

oleObject300.bin

oleObject27.bin

image243.wmf
(

)

23

2*

131212

2

11

2(2)

nn

k

kiiiii

ii

iik

dx

gggggg

dg

--

==

¹

æö

æöæö

=-+--

ç÷

ç÷ç÷

ç÷

èøèø

èø

åå

oleObject301.bin

image244.wmf
(

)

21

2*

13111

2

11

21

nn

k

kiiii

ii

iik

dx

ggggg

dg

--

==

¹

æö

æöæö

=-

ç÷

ç÷ç÷

ç÷

èøèø

èø

åå

oleObject302.bin

image245.wmf
(

)

(

)

2*

2

11**

2

21

k

kiii

iik

dx

ggxx

dg

--

¹

=-

oleObject303.bin

image246.wmf
(

)

(

)

2*

*

2

0,1,...,010

k

mi

iik

dx

gmnx

dg

¹

>=Ù<<Þ<

oleObject304.bin

oleObject305.bin

image247.wmf
*

k

x

image22.wmf
1

1

n

i

i

x

=

£

å

oleObject306.bin

oleObject307.bin

oleObject308.bin

image248.wmf
*

k

x

oleObject309.bin

image249.wmf
n

oleObject310.bin

image250.wmf
1

2

0

20

0

03

g

A

g

éù

éù

==

êú

êú

ëû

ëû

oleObject311.bin

oleObject312.bin

oleObject28.bin

image251.wmf
*

0

x

oleObject313.bin

image252.wmf
*

0

y

oleObject314.bin

image253.wmf
A

oleObject315.bin

image254.wmf
*

0

16

1.2

11

5

23

x

===

+

oleObject316.bin

image255.wmf
1

g

oleObject317.bin

image23.wmf
0

,1,...,

ii

xgxin

£=

oleObject318.bin

image256.wmf
*

1

x

oleObject319.bin

oleObject320.bin

image257.wmf

110

1

0.6

2

xyx

æö

===

ç÷

èø

oleObject321.bin

image258.wmf

220

1

0.4

3

xyx

æö

===

ç÷

èø

oleObject322.bin

oleObject323.bin

oleObject324.bin

oleObject29.bin

image259.wmf
1

g

oleObject325.bin

image260.wmf
*

2

x

oleObject326.bin

oleObject327.bin

oleObject328.bin

image261.wmf
(

)

012

,,

xxx

oleObject329.bin

image262.jpeg

image263.wmf
*

0

x

image24.wmf
0,1,...,

i

xin

³=

oleObject330.bin

image264.wmf
(

)

12

,

gg

oleObject331.bin

oleObject332.bin

image265.jpeg
x0*

1,8
16
14

12

0,8
0,6
0,4

0,2

<o x0* (g2=1)

2 4 5
gl

= =x0* (g2=2) ——x0* (g2=3)

oleObject333.bin

image266.wmf
1

g

oleObject334.bin

image267.wmf
2

g

oleObject335.bin

oleObject30.bin

oleObject336.bin

image268.wmf
1

g

oleObject337.bin

oleObject338.bin

oleObject339.bin

image269.jpeg
1,8

16

1,4

12

x0*(E(g1)) & E(x0*(g1))

——x0*(E(g1))

= =E(x0*(g1))

3

E(g1)

Approximation of x0*(E(g1))

image270.wmf
1

()

Eg

oleObject340.bin

oleObject341.bin

oleObject342.bin

image25.wmf
i

l

image271.wmf
1

()1

Eg

-

oleObject343.bin

image272.wmf
1

()1

Eg

+

oleObject344.bin

image273.wmf
(

)

*

01

()

xEg

oleObject345.bin

oleObject346.bin

image274.wmf
(

)

*

01

()

Exg

oleObject347.bin

oleObject348.bin

oleObject31.bin

oleObject349.bin

oleObject350.bin

image275.wmf
*

01

(())

xEg

oleObject351.bin

image276.wmf
1

()1

Eg

=

oleObject352.bin

image277.wmf
1

()3

Eg

=

oleObject353.bin

oleObject354.bin

image278.wmf
1

()2

Eg

=

image26.wmf
(

)

000

11

1

nn

iiii

ii

Lxxgxx

ll

==

æö

=+-+-

ç÷

èø

åå

oleObject355.bin

oleObject356.bin

oleObject357.bin

oleObject358.bin

oleObject359.bin

oleObject360.bin

oleObject361.bin

image279.jpeg

image280.wmf
*

1

x

oleObject362.bin

oleObject32.bin

oleObject363.bin

image281.wmf
*

1

x

oleObject364.bin

image282.wmf
1

g

oleObject365.bin

oleObject366.bin

image283.wmf
2

g

oleObject367.bin

image284.jpeg

oleObject368.bin

image27.wmf
1

0

10

n

i

i

dL

x

d

l

=

=-³

å

oleObject369.bin

oleObject370.bin

oleObject371.bin

oleObject372.bin

oleObject373.bin

image285.jpeg
12

eeeeex1* (g2=1) = =x1* (g2=2) ——x1*(g2=3)

image286.wmf
*

1

x

oleObject374.bin

oleObject375.bin

oleObject376.bin

oleObject33.bin

image287.wmf
*

1

x

oleObject377.bin

oleObject378.bin

image288.wmf
*

1

x

oleObject379.bin

oleObject380.bin

image289.jpeg
1,2

x1*(E(g1)) & E(x1*(g1))

e
N

—x1*(E(g1))

— -E(x1*(g1))

3 a4
E(g1)

+++-- Approximation of x1*(E(g1))

oleObject381.bin

oleObject382.bin

oleObject383.bin

image28.wmf
0

0,1,...,

ii

i

dL

gxxin

d

l

=-³=

oleObject384.bin

oleObject385.bin

image290.wmf
(

)

*

11

()

xEg

oleObject386.bin

oleObject387.bin

image291.wmf
(

)

*

11

()

Exg

oleObject388.bin

image292.wmf
*

1

x

oleObject389.bin

oleObject390.bin

oleObject34.bin

image293.wmf
(

)

*

11

()

xEg

oleObject391.bin

image294.wmf
*

11

(())

xEg

oleObject392.bin

oleObject393.bin

oleObject394.bin

image295.wmf
(

)

*

11

()

Exg

oleObject395.bin

oleObject396.bin

image296.wmf
(

)

*

11

()

Exg

image29.wmf
1

0

10

n

i

i

dL

dx

l

=

=-£

å

oleObject397.bin

image297.wmf
(

)

*

11

()

xEg

oleObject398.bin

image298.wmf
*

11

(())

xEg

oleObject399.bin

oleObject400.bin

image299.wmf
(

)

*

11

()

Exg

oleObject401.bin

oleObject402.bin

image300.jpeg
0 1 2 2 4 5
gl

ceeeex2¥ (g2=1) = =x2* (g2=2) ——x2*(g2=3)

oleObject35.bin

image301.wmf
*

2

x

oleObject403.bin

oleObject404.bin

oleObject405.bin

image302.wmf
*

2

x

oleObject406.bin

oleObject407.bin

image303.wmf
*

2

x

oleObject408.bin

oleObject409.bin

image30.wmf
0

0,1,...,

ii

i

dL

gin

dx

ll

=-£=

image304.jpeg
x2*(E(g1)) & E(x2*(g1))

I
[

e
N

e
@

e
«

- 1
e
1 2 3 4 5
E(gl)
——x2*(E(g1)) = =E(x2*(g1)) -----Approximation of x2*(E(g1))

oleObject410.bin

oleObject411.bin

oleObject412.bin

oleObject413.bin

oleObject414.bin

image305.wmf
(

)

*

21

()

xEg

oleObject415.bin

oleObject416.bin

image306.wmf
(

)

*

21

()

Exg

oleObject36.bin

oleObject417.bin

image307.wmf
*

2

x

oleObject418.bin

oleObject419.bin

image308.wmf
(

)

*

21

()

xEg

oleObject420.bin

image309.wmf
*

21

(())

xEg

oleObject421.bin

oleObject422.bin

oleObject423.bin

image31.wmf
ij

ij

c

¹

image310.wmf
(

)

*

21

()

Exg

oleObject424.bin

oleObject425.bin

image311.wmf
(

)

*

21

()

Exg

oleObject426.bin

image312.wmf
(

)

*

21

()

xEg

oleObject427.bin

image313.wmf
*

21

(())

xEg

oleObject428.bin

oleObject429.bin

oleObject37.bin

image314.wmf
(

)

*

21

()

Exg

oleObject430.bin

oleObject431.bin

image32.wmf
0

i

i

l

³"

oleObject38.bin

image33.wmf
0

i

dL

i

d

l

³"

oleObject39.bin

image1.wmf
,1,2,...,

i

xin

=

image34.wmf
0

i

i

dL

i

d

l

l

="

oleObject40.bin

image35.wmf
0

j

xj

³"

oleObject41.bin

image36.wmf
0

j

dL

j

dx

£"

oleObject42.bin

image37.wmf
0

j

j

dL

xj

dx

="

oleObject43.bin

image38.wmf
ij

=

oleObject44.bin

oleObject1.bin

oleObject45.bin

oleObject46.bin

oleObject47.bin

image39.wmf
0

i

xi

³"

oleObject48.bin

image40.wmf
0

i

dL

i

dx

£"

oleObject49.bin

image41.wmf
0

i

i

dL

xi

dx

="

oleObject50.bin

image42.wmf
*

0

0

x

>

