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Individual tree selection (ITS) is one option to manage uneven-sized forest ecosystems. However, scientifically
based field guidelines adapted to ITS and economic profitability are rare, often because there is a lack of suitable
tree models to use in growth and treatment simulations. The objective of this study is to develop individual-tree
distance-dependent growth models focusing on Norway spruce dominated uneven-sized stands. Three models
of different complexity, but with the same structural basis, are presented, followed by some examples of growth
patterns for the subject trees. The data include 1456 trees (307 sample trees) collected from five sites in southern
Sweden. The basic model (S) depends on subject tree size as the predictor, the second model (SD) adds distance
to competitors as a predictor, and the third model (SDC) adds crown ratio as a predictor to the structure. R2

Adj
increases with number of predictors from 0.48 to 0.58 to 0.62. The levels of RMSE improve accordingly from
5.02 cm2 year−1 (S) to 4.43 cm2 year−1 (SD) and 4.26 cm2 year−1 (SDC). The present calibration range and model
structures primarily make the models suitable for management simulation of individual-tree selection of Norway
spruce in southern Sweden. The format of the models allows for further extension with additional predictors and
calibration data with greater coverage.

Introduction
Uneven-sized forest management with individual tree selection
(ITS) is one way to accommodate diverse expectations from
various stakeholders. However, increased application of ITS is, in
many regions, hindered by the paucity of scientifically based field
guidelines. Currently there are relatively few tree growth mod-
els available that are appropriate for the ITS scenario analyses
required to develop optimal field recommendations.

ITS is generally understood as a practice in which trees are
individually selected for harvest in a compromise between set
management aims, e.g. silvicultural, economic or ecological
(Pommerening and Murphy 2004; Spinelli et al. 2016). In ideal
case, the corresponding field operations follow a science-based
protocol of selection guidelines or rules, defined in accordance
with the management goals for the forest.

In the context of resource use efficiency (Binkley 2004), ITS
guidelines that optimize round wood value production are of
interest. This aim implicates that the field selection analysis shall
evaluate whether a tree group, which is competing for the same
resources as the subject tree, will perform better or worse if the
subject tree is selected for harvest or not. This decision involves
many dimensions, of which a central part is the ability to forecast
individual tree growth of residual trees depending on the decision
taken.

The task of defining an appropriate structure for an individual-
tree growth model, adapted to the specified requirements,
involves compromises between conflicting interests, including
model complexity to achieve biological realism (Buchman and
Shifley 1983), and model simplicity to allow for flexibility and
relevance in field applications (Pacala et al. 1996; Robinson and
Monserud 2003). Theory-oriented approaches support more
flexible representation of data (Weiskittel et al. 2011) and are
potentially less sensitive to extrapolation beyond the observed
data range (Pretzsch 2009; Weiskittel et al. 2011) compared
with more pure statistical methods. At the other end, theoretical
complexity should be constrained to the level at which input and
output variables are compatible with units available for the field
user (Pukkala and Miina 1998; Pretzsch 2009).

Distance-dependent models (Munro 1974) are adequate tools
for quantifying the variation in stand structure, which enables
precise prediction of single tree growth (Bella 1971; Mitchell 1975;
Daniels et al. 1986; Pukkala 1989; Canham et al. 2004; Pret-
zsch 2009, p. 310). With distance-dependency incorporated, the
model can be used to analyze spatial impact on ITS. Results from
distance-dependent models are also easier to transform into
useable field guidelines than those from distance-independent
models (Pukkala and Miina 1998).

Tree age should not be included as a predictor for growth in
uneven-sized stands, due to large variances, both within stands
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(Peng 2000; Vanclay 2012) and within diameter-classes (Tarasiuk
and Zwieniecki 1990). Instead, tree size is the most appropriate
predictor of tree growth in structurally diverse stands (Shiue
1962; Zeide 1993; Pukkala et al. 2009). It is furthermore crucial
that growth models intended for ITS application are calibrated
with data from representative diverse stand structures (Pukkala
et al. 2009; Lundqvist 2017).

The majority of the tree-growth models developed for Norway
spruce (Picea abies (L.) Karst.) and Fennoscandia are distance-
independent (Näslund 1935; Jonsson 1980; Söderberg 1986;
Holte and Solberg 1989; Hynynen et al. 2002; Andreassen and
Tomter 2003; Pukkala et al. 2009; Elfving and Nyström 2010;
Pukkala et al. 2013; Bianchi et al. 2020a). Regarding the few
existing distance-dependent models, some rely on tree age as
predictor (Pukkala et al. 1998; Vettenranta 1999) and others
are calibrated exclusively on even-sized stands (Pukkala 1989;
Tham 1989; Pukkala and Kolström 1991; Pukkala et al. 1994). An
exception is Bianchi et al. 2020b) who presented a distance-
dependent model for southern Finland and ITS. This model
has a statistical polynomial structure, which makes it relatively
complex in terms of number of predictor variables. Therefore,
based on the existing limited range of models, there is room for
additional spatial models with a stronger focus on theoretical
simplicity.

The model variables in an individual-tree growth model need
to describe at minimum two core processes: (1) the subject tree
growth potential and (2) the growing space available due to com-
petition (Zeide 1993; Hasenauer 2006). Concerning the first part,
the tree growth potential, Zeide (1993) found that it could in turn
be broken down into two opposing components. The first posi-
tive component represents the innate tendency towards expo-
nential multiplication, associated with the biotic potential. The
second opposing component represents the constraints imposed
by internal self-regulatory mechanisms (and, if not separated,
also by external factors associated with competition, limited
resources and damage). The decline component is traditionally
based on tree age but Zeide (1993) also proposed a general
formula based on tree size. The differential form of the logistic
function is an example of an equation that meets the above
criteria. It was first used for tree growth modelling by Mackinney
(1937). An alternative but similar differential equation, with a
closed-form solution, has recently been developed by Lohmander
(2017).

The influence of competition from a neighbouring tree (the
second process) should be a decreasing function of the distance
between the neighbour and the subject tree and an increas-
ing function of the size of the neighbour (Weiner and Solbrig
1984). A wide spectrum of distance-dependent methods has
been proposed for weighting competitor influence (Dale et al.
1985; Biging and Dobbertin 1992; Burkhart and Tomé 2012).
Most studies report no clear trends regarding which competition
index that displays the best performance (Alemdag 1978; Weiner
and Solbrig 1984; Daniels et al. 1986; Pukkala 1989; Biging and
Dobbertin 1995; Miina and Pukkala 2002; Rivas et al. 2005). Some
studies, however, indicate that size-distance indices are superior
(Tomé and Burkhart 1989; Biging and Dobbertin 1992; Filipescu
and Comeau 2007).

Weiskittel et al. (2011, p. 26) presented an overview of the
considerations necessary for including a size-distance index in a

growth model: (1) decide on a size attribute, (2) determine which
trees are competitors, (3) define a relative size estimate, and (4)
introduce a method of weighting competitor influence.

The most common variables used as size attribute are diam-
eter at breast height (dbh), and basal area at breast height
(Burkhart and Tomé 2012, p. 210). Competitors are generally
identified by application of a fixed rule determining whether a
neighbouring tree is a competitor or not (Soares and Tomé 1999;
Pretzsch 2009, p. 295). The identification with a fixed rule results
in unwanted edge effects, which are likely to influence model
performance (Martin et al. 1977). One strategy to smooth out
distinct edges and simultaneous weight competitor influence is
to use non-linear distance functions with a defined asymptote
(Soares and Tomé 1999; Elfving and Jakobsson 2006). The rela-
tive size of competing trees is most often expressed by the ratio
of competitor size to subject tree size (Hegyi 1974; Martin and Ek
1984; Biging and Dobbertin 1992).

Previous research indicates that indices of competition often
fail to explain major parts of the variation introduced by local
competition (Soares and Tomé 1999) and the performance of
individual indices varies according to forest type and forest con-
ditions (Burkhart and Tomé 2012, p. 228).

Norway spruce is the most important commercial tree species
in southern Fennoscandia, and as a secondary tree species it is
well suited for uneven-sized forest management and ITS. The
objective of this study is to develop individual-tree distance-
dependent growth models focusing on Norway spruce domi-
nated uneven-sized stands on fertile sites in southern Sweden.
Furthermore, the model shall be constructed with components
backed by theoretical reasoning and aim for structural simplic-
ity, high accuracy, and facilitate for spatial ITS management
analyses.

Three basal area increment models with different levels of
complexity, but with the same structural basis, are presented,
followed by some examples of subject tree growth patterns
depending on the influence of competitor distance, competitor
tree size, subject tree crown ratio, and subject tree size.

Methods
Calibration data
Five separate plots in southern Sweden were selected for col-
lection of calibration data. Selected sites represent uneven-sized
Norway spruce dominated stands, medium to fertile site qual-
ity, without thinning treatments in the last 10-year period, see
Table 1. Other species were present, the main one being Scots
pine (Pinus sylvestris). All the stands are a result of natural regen-
eration. Past management input ranged from active selection
cutting to laissez-faire cultivation with self-promoted tree size
diversification, see Figure 1.

One square plot per site, 60 × 60 m, was measured. Positions
were recorded for all trees with diameter at breast height (dbh)
above 6 cm, using Postex equipment (Haglöf) which employs
ultrasound and triangulation for distance measurements. Coor-
dinates were measured from nine circular sample plots per site,
evenly distributed in a grid. The nine sub-plots were inter-fitted
into one global coordinate map by ordinary least square regres-
sion of double-measured coordinate reference points, defined by
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Table 1 Model training data sets.

Measure Mosshult Romperöd Simontorp Öveshult Lilla Norrskog

Site Latitude (◦) 57◦08 56◦19 56◦21 56◦37 57◦18
Altitude (m) 190 100 120 210 270
Site index (SI)a G31 G30 G31 G30 G29

Stand Number of stems (st ha−1) 920 654 612 726 488
Basal area (m2 ha−1) 38 30 30 32 32
Mean dbh (cm) 19.3 20.1 22.1 20.8 25.6
Proportion of Norway Spruce 0.63 0.58 0.74 0.83 0.62
Time since last cutting (years) >50 44 10 >30 >10
Self-thinning ratio 0.18 0.07 0.05 0.1 0.03

Sample trees Number of sample trees 57 43 68 74 (71)b 65
Mean dbh (cm) 24.2 23.2 22.6 23.6 20.9
SD dbh (cm) 13.4 12.6 12.2 10.8 13.3
Max dbh (cm) 60.5 51.5 51.5 50.9 51.2
Min dbh (cm) 6.8 6.1 6.4 5.9 6.0
Mean growth (cm2 year−1) 6.50 8.07 8.14 6.80 9.52
SD growth (cm2 year−1) 6.13 7.13 7.14 5.07 8.85

Revision Period 2012–2016 2012–2016 2013–2017 2013–2017 2013–2017

Stand measures based on trees with dbh (diameter at breast height) > 6 cm. Species proportions based on basal area. Self-thinning ratio represents
number of trees that have died within the last 10 years divided by number of living trees. SD = standard deviation. aSI = height at age 100, according
to the Swedish system (Hägglund and Lundmark 1977). bThe model that incorporates crown ratio included 71 of the sample trees.

Figure 1 Diameter distribution histograms for the calibration data plots, (a) Mosshult, (b) Romperöd, (c) Simontorp, (d) Öveshult and (e) Lilla Norrskog.
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sticks placed along the sub-plot borders. As a consequence of the
circular shape of the sub-plots, some additional trees, adjacent to
the 60 × 60 m square, were recorded and used for the calibration.
The resulting total data set, from the five sites, consisted of 1456
live tree positions. Data on species and cross-calipered dbh was
collected for all trees. At one of the sites, tree positioning was also
undertaken using a terrestrial laser (Leica P40), which indicated
a systematic underestimation of the Postex distances by 1–3 per
cent and a random variation of 4 cm (1 SD).

Sample trees (n = 307) were selected for additional data col-
lection and later use as subject trees in the model calibration. The
selection used stratified random sampling, based on tree vari-
ables within four fixed sub-divisions of dbh-classes. The selection
within each strata was made subjectively on the basis of two-
dimensional plots of preliminary competition variables and maxi-
mizing the coverage in these plots. Examples of such variables are
tree diameter, summed basal areas of all trees within a certain
radius or basal area of larger spruce within a certain radius. Only
trees with complete records of competitor tree positions within
10 m were selected as sample trees. The additional data from
the sample trees covered tree height, crown length, crown width
and annual ring width from the last 5 years. Ring widths were
measured from increment cores extracted from the north side
at breast height (corresponding calendar years are referred to as
revision period in Table 1), using an LINTAB 6 device (RinnTech).
Mean measurement error was estimated to 0.016 mm, of which
38 per cent is explained by technical error and the remaining part
is due to intra ring width variations and shrinkage. To be included
in the data set, the sample trees also had to meet the following
criteria: (1) no detected root rot within the sapwood, (2) a live top
shoot, and (3) no visible damage that could impair growth and
that has been caused by factors other than tree competition.

To prepare the data set for calibration of the model the tree
diameters at the start of the growth period had to be estimated.
To do this, the ring widths of the last 5 years were used to
calculate the total diameter growth for each sample tree. From
this, simple linear regression was used to estimate diameter
growth as function of tree diameter. The regression model was
then used to reduce the diameter of all trees except the sample
trees. For the sample trees, the year ring measurements were
used directly.

Modelling
The selected model structure can be described as of ‘grey box’
type (Pretzsch 2009, p. 428), built up by structures that can, to
some extent, be explained by biological or physical phenomena.
The first part represents the internal growth potential of the
subject tree and follows the structure suggested by Lohmander
(2017), see equation (1). The expression consists of two terms
describing the biotic potential and the constraints due to increas-
ing size (Zeide 1993).

dxi

dt
= a1x0.5

i + a2x1.5
i (1)

where dxi
dt is the basal area increment of subject tree i (cm2 year−1),

x is basal area (m2) and the parameters a are regression
coefficients. The exponent 0.5 of the first term (the biotic

potential) is defined by proportions between tree diameter
(square root of the basal area), vertical crown projection area
and basal area growth. The second term, the internal growth
constraint, is a relative share multiplier, defined by the difference
between 1 and a fitted proportion of the basal area, 1−bx. Hence,
dxi
dt = a1x0.5(1 − bx) = a1x0.5 − a1bx1.5 (Lohmander 2017).

The second part, the competition index (CI), adds external
growth restriction to the first internal growth part due to inter-
tree competition based on size-distance indices (see equation
(2) for the fundamental structure). The formula is a develop-
ment from the general structure described by Burkhart and Tomé
(2012, p. 210).

CIi =
n∑

j �=i

xj g
(
xi, xj

)
f
(
Rij

)
(2)

where CI is defined as the sum of the basal area x of all com-
petitor trees, weighted by a size weighting function (g(xi,xj)) and
by a distance weighting function (f (Rij)), in relation to each com-
petitor tree j. From the assumptions above, candidate formulae
for CI were created and evaluated separately. For the distance
weighting function, f (Rij), three requirements were set:

1. The effect of competition shall decrease with distance, i.e.
df (R)

dR ≤ 0.
2. The decrease with distance must be strong enough so that

the competition from trees close to the subject tree is more
important than the total competition from trees far away.
Expressed formally, this means that there should exist a dis-
tance, d, probably in the range of 4–10 m, for which the
area integral

∫ d
0f (R)· 2πR· dR is greater than

∫ ∞
d f (R)· 2πR· dR

. In other words, for a tree in a forest with reasonably even
stem distribution, the summed competition from trees within
the distance of d is more important than the sum of the
competition from all other trees in the forest.

3. Getting closer to the subject tree, the weighting function shall
approach a maximum value asymptotically, i.e. lim

R→0
f (R) = k

and df (0)

dR = 0.

Once the basic CI formula was selected, it was further devel-
oped and fitted simultaneously with the complete growth model.
Please refer to Olsson and Fagerberg (2019) for further details.

The candidate formulae of the total model expressions
were evaluated in the first development phase with adjusted
R2, statistical properties of the regression parameters and
residual analysis. In a second phase, when the main part of
the model structure was formulated, 10-fold cross-validation
was also employed. For the cross-validation, the total sample
was randomly divided into ten groups of equal numbers
of subject trees. From this grouping, ten different training
samples were created by omitting one test group in each
sample; i.e. each test group contained unique observations
where each observation is used only once for validation. The
model was then fitted to each of these training samples and
the performance was studied with the excluded validation
group (residual plots and RMSE), see Figure 2. Furthermore,
the sample-to-sample-variation of the parameter values were
standardized and analyzed (Figure 3). Empirical studies have
shown that 5- to 10-folds is optimal to yield test error rate
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Figure 2 RMSE per cross-validation fold with (a) the SD-model and (b)
the SDC-model (included predictors; S = tree size, D = inter-tree distance,
and C = crown ratio). Lines represent test RMSE values; grey solid = mean,
grey dotted = standard deviation. Test sets are indicated as empty circles
with a unique colour per sample when they are part of the training set.
Cross indicates training set mean value. Differences between training and
test RMSE means are 0.01 for the SD-model and 0.01 for the SDC-model
(training RMSE d.f. ≥ 273, test RMSE d.f. ≥ 30).

estimates with a balanced trade-off between high bias and high
variance effects (James et al. 2013).

Three model alternatives were developed with different num-
bers of predictor variables: (1) with the predictor subject tree size
(S); (2) with the predictors tree size and distance to competitors
(SD); and (3) with the predictors tree size, distance to competitors
and crown ratio of the subject tree (SDC), see equations (3)–(5).

S :
dxi

dt
= a1x0.5

i + a2x1.5
i = x0.5

i (a1 + a2xi) (3)

SD :
dxi

dt
= a1x0.5

i +a2x1.5
i + a3x0.5

i

⎛
⎜⎝∑

j �=i

xj

(
xj

xi

)k2
e

−
(

Rij
k3

)2

wj

⎞
⎟⎠

k1

= x0.5
i

⎛
⎜⎜⎝a1 + a2xi + a3

⎛
⎜⎝∑

j �=i

xj

(
xj

xi

)k2
e

−
(

Rij
k3

)2

wj

⎞
⎟⎠

k1
⎞
⎟⎟⎠

(4)

Figure 3 Fitted parameter estimates per cross-validation fold, standard-
ized as relative deviation from mean, (a) SD-model and (b) SDC-model
(included predictors; S = tree size, D = inter-tree distance and C = crown
ratio).

SDC :
dxi

dt
= CR · a1x0.5

i + CR · a2x1.5
i + CR · a3x0.5

i

×
⎛
⎜⎝∑

j �=i

xj

(
xj

xi

)k2
e

−
(

Rij
k3

)2

wj

⎞
⎟⎠

k1

= CR· x0.5
i

⎛
⎜⎜⎝a1+a2xi+a3

⎛
⎜⎝∑

j �=i

xj

(
xj

xi

)k2
e

−
(

Rij
k3

)2

wj

⎞
⎟⎠

k1
⎞
⎟⎟⎠

(5)

where CR is the living crown ratio of total tree height (living crown
length is defined by the lowest living branch). w is a parameter
used for competitor tree species other than spruce (if spruce
then w = 1). Rij is the distance between the subject tree i and
competitor tree j (m). Linear parameters are indicated by a, while
non-linear parameters are indicated by k.

The fitting of the models was accomplished in two steps. The
first step applied a hierarchical setup using the Matlab function
nlinfit (a numerical iterative function for non-linear least square
regression) to estimate the non-linear parameters. For each call
by nlinfit, the linear parameters, a1 to a3, were estimated ana-
lytically by standard linear least squares inside the call-back
function. In this step, each site was allocated a unique value of
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Table 2 Observation data for the even-sized test set.

Measure 1Thin 3Thin
C3/C24 C3

Site Latitude (◦) 56◦33 56◦33
Altitude (m) 110 110
Site index (SI)a G32/G33 G32

Stand Number of stems (st ha−1) 2089/2511 756
Basal area (m2 ha−1) 21.1/31.0 26.4
Mean dbh (cm) 10.9/12.2 20.5
Proportion of Norway Spruce 1 1
Time since last cutting (years) – 9

Sample trees Number of sample trees (st) 396 64
Mean dbh (cm) 11.6 20.8
SD dbh (cm) 3.2 5.0
Max dbh (cm) 19.4 30.1
Min dbh (cm) 3.4 7.4
Mean growth (cm2 year−1) 5.5 10.6
SD growth (cm2 year−1) 4.1 7.5

Revision Period 1987–1993 2010–2020

Initial conditions of two trial plots C3 and C24 represent first thinning (1Thin) and the later revision of C3 represents third thinning (3Thin). For 1Thin,
some of the stand measures and the Site index are presented per plot. SD = standard deviation. aSI = height at age 100, according to the Swedish
system (Hägglund and Lundmark 1977).

a1, but all other parameters remained shared. In the second step,
all other parameters were fixed and a single common value of a1
was estimated using standard linear least squares fitting.

The two-step parameter fitting was chosen since it was found
that it resulted in less variation of the parameter estimates in
the cross-validation tests; i.e. it was considered as more robust
compared with the single step approach, see discussion below.

Performance in even-sized stands
The performance of the SD-model was also tested in even-
sized stand conditions. Data from the Skogaby trial site in the
southwest of Sweden, which is run under the auspices of the
Swedish University of Agricultural Sciences, was used. Three trial
plots were divided into two groups representing the stand devel-
opment stage before first thinning (1Thin) and before third thin-
ning (3Thin), respectively, see Table 2. Each plot is 30 × 30 m,
surrounded by a 10 m zone in which the same treatment as the
central plot is applied. The plots were established by planting and
the 3Thin stand was thinned 17 and 9 years before the start of the
revision period. The SDC model was assumed to perform similar
to the SD model in even-sized stands, therefore it was not tested.

Results
Adjusted coefficient of determination (R2

Adj) increased from 0.48
to 0.58 when the size-distance index was added to the model
(Table 3), while adding the predictor crown ratio resulted in a
further moderate improvement to 0.62. Consequently, model
performance follows the degree of complexity; however, the level
of unexplained variation is only slightly improved when the crown
ratio variable is added on top of distance weighting (Figure 4). The
validity of the models, expressed as RMSE, improves according

to the same pattern, with lower errors the more predictors that
are included; 5.02 cm2 year−1 (S); 4.43 cm2 year−1 (SD); and
4.26 cm2 year−1 (SDC). Corresponding RMSE mean values for the
test-folds in the cross-validation are almost identical (Figure 2).
The residual analyses show no systematic trends related to any of
the predictor variables. However, the mean residuals calculated
per site (Table 4) indicate that site quality differences represent
a considerable part of the unexplained variation. As expected,
residual variation is heteroscedastic and increases with predicted
growth level (Figure 5). Predicted growth per observation, site and
model is displayed in Figure 6. With crown ratio added, residual
variation remains, to a large extent, unaffected except for a
faintly visible improvement for the most productive trees.

When the SD model was tested on even-sized stands the
results indicated a general and systematic overestimation of
approximately 5–6 cm2 year−1 (Figure 7).

For the purpose of visualizing the competition effects, annual
ring widths based on the SDC-model are shown for a theoretical
tree group, where one variable at time is changed, see Figure 8.
Comparing the ranges of impact, the crown ratio is the variable
that has the largest impact on radial growth, followed by distance
to large competitors. The distance to large competitors has a
distinct impact on all subject tree sizes, with more pronounced
effects the smaller the subject tree and the shorter the distance.
The size of large competitors also displays noticeable effects,
more clearly seen for small subject trees. Annual ring widths are
fairly stable for subject trees between 10 and 40 cm dbh with a
rapid decrease in smaller trees.

Discussion
The model structure chosen is based on a few hypotheses about
the growth potential of the tree and the impact of competition
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Table 3 Regression statistics of the S-, SD- and SDC-models (included predictors; S = tree size, D = inter-tree distance, and C = crown ratio) based on the
complete calibration set.

Parame-
ter

S SD SDC

Estimate t-value P-value Estimate t-value P-value Estimate t-value P-value

a1 43.76 33.7 <0.001 106.6 92.8 <0.001 154.4 104.5 <0.001
a2 -18.13 -0.95 0.344 -149.1 -5.5 <0.001 -212.2 -5.7 <0.001
a3 -118.2 -7.7 <0.001 -142.7 -4.1 <0.001
k1 0.501 2.2 0.029 0.357 1.5 0.128
k2 0.276 3.1 0.002 0.325 2.7 0.008
k3 5.033 10.5 <0.001 4.918 9.6 <0.001
w 0.482 3.5 <0.001 0.637 3.6 <0.001

RMSE 5.02 4.43 4.26
MSE 25.2 19.7 18.2
R2

Adj 0.481 0.588 0.622

RSME and MSE were calculated consistently for all models by dividing the residual sum of squares by n. R2
Adj = coefficient of determination adjusted

for the number of predictors.

Table 4 Site and model specific statistics of the S-, SD- and SDC-models (included predictors; S = tree size, D = inter-tree distance, and C = crown ratio).

Site Mean residual Adj R2

S SD SDC S SD SDC

Mosshult -2.3 0.1 0.1 0.45 0.73 0.76
Romperöd 0.4 -1.1 -0.8 0.52 0.55 0.66
Simontorp 0.1 -0.4 -0.5 0.51 0.58 0.55
Öveshult -1.7 -1.5 -1.2 0.26 0.4 0.38
Lilla Norrskog 2.3 2.2 1.9 0.5 0.61 0.68

Mean residuals (cm2 year−1) and adjusted R2 (Adj R2).

Figure 4 Unexplained variation depending on model complexity. O rep-
resents variance (S2) of the observations. S, SD, SDC represent test mean
square error (MSE) of models S, SD and SDC, respectively (included predic-
tors; S = tree size, D = inter-tree distance and C = crown ratio). Degrees of
freedom are equal to n in all estimates.

(see section Modelling). If the first two terms, represented by
model S, are solved as a differential equation, see Lohmander
(2017), the explicit solution shows that annual diameter
increment is almost constant as long as the trees are moderately
sized. This increment capacity then decreases as the tree grows
larger and the internal processes require an increasing proportion
of the collected resources. Since the model is expressed as basal
area growth this behaviour may not be obvious when just looking
at the expression.

The third term, the competition index, is regarded as the
sum of the basal area of competitor trees, but with weighting
factors for the different competitors and an exponent (k1) on the
summed competition. When the third predictor variable (CR) was
added, the best result was achieved when it was included as a
multiplier in all three terms. This can be viewed as a scaling of the
complete model, but of course, the values of parameters change
to adopt for this.

The competition index
Basal area was selected as the unit to quantify competition
since it produced less parameter variation compared with using
dbh. The competition term also includes the square root of
the basal area of the subject tree (x0.5

i , corresponding to dbh).
This is because it was found that the summed competition
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Figure 5 Growth residuals plotted against predicted growth, with (a) the
SD-model (n = 307) and (b) the SDC-model (n = 304) (included predictors;
S = tree size, D = inter-tree distance, and C = crown ratio). Lines indicate ±1
SD (red dotted), calculated with linear regression of accumulated RMSE
values where each accumulation step is represented by the mean value
within a window of 15 observations.

resulted in a certain reduction of the annual ring width, rather
than a certain reduction of the basal area growth. The effect
of competitor tree species on the inter-tree competition was
considered by the weight (w) (≤1) which reduces this effect
from species other than spruce. The data available do not
support unique weighting factors for the different species.
The estimates of w support previous findings stating that
competition from other species results in less growth reduction
than competition from spruce (Pukkala et al. 2009, 2013). In this
study, competition influence from other species was allocated
weights of 48 per cent (SD) and 64 per cent (SDC) compared with
spruce.

The parameter k1 (0.50 and 0.36) exhibits a decreasing
competition impact per unit (basal area) with increasing levels of
competition. This effect was less significant when crown ratio was
added to the model. The parameter k2 adjusts the relative size
estimate of competitors. In some other studies, only competition
from larger trees is included (Lorimer 1983; Pukkala and Kolström
1987). This kind of approach assumes a one-sided competition
(Burkhart and Tomé 2012, p. 215) that results in a step

Figure 6 Predicted growth plotted against observed growth presented per
model and site (a) S-model, (b) SD-model and (c) SDC-model (included
predictors; S = tree size, D = inter-tree distance and C = crown ratio). The
red line indicates perfect prediction.
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Figure 7 Growth residuals based on test observations from first-thinning
(1Thin) and third-thinning (3Thin) even-sized stands, from simulations
with the SD-model (included predictors; S = tree size and D = inter-tree
distance), displayed against predicted growth. Trendline from linear
regression of both subsets; y = −4.69 – 0.06x (P-value = 0.09). Red dotted
reference lines display the standard deviation lines from the SD-model
calibration (Figure 5).

change in the weighting of competitors when the size of a com-
petitor exceeds the subject tree. This study in contrast, assumes a

two-sided continuous relation (
xj
xi

)
k2 . Estimated k2-values (0.276

and 0.325) increase weight for competitors larger than the
subject tree while the effect is reverse for smaller competitors.

The function chosen for distance weighting, e−( R
k3 )

2
, was used

by Elfving and Jakobsson (2006) in a similar context. For this
function, no fixed distance for defining the competition range
is required. This is illustrated by the area integral in Figure 9,
which has passed 98 per cent of its maximum value at 2k3.
Common spatial functions reported in the literature are often
based on the formula 1

Rij
(Hamilton 1969; Hegyi 1974; Martin

and Ek 1984; Canham et al. 2004), which is problematic in this
respect because the area integral keep growing towards infinity
at a constant rate. It should also be noted that the area integral
of the weighting function (

∫ ∞
0 f (R)· 2πR· dR) sums to π · k2

3, i.e. k3
could be interpreted as a characteristic radius representing the

range of competition. In this case, k3 is approximately 5.0 m for
both models; i.e. the competition influence is about 50 per cent
at 5 m and close to 0 per cent at 10 m. This is in line with the
results of Miina and Pukkala (2000). They optimized the fixed
search radius for Norway spruce competitors in Finland with a
distance-dependent competition index based on vertical angles
(Pukkala and Kolström 1987). Optimum value was 10 m but
reducing the radius down to 6 m only resulted in minor reduction
in predictability.

Parameter estimation
The parameter estimation proved to be more robust in a two-
step approach. This procedure was necessary due to the site-to-
site-variation in both site fertility and average competition. Since

the variation in fertility is not resolved by the model, variations
in growth that are truly due to differences between sites could
falsely have affected the competition parameters if they had
been estimated in one single step. By allowing for site specific
growth potentials (unique a1) in the first step when setting the
competition parameters, this bias is eliminated. In the second
step, a common value of a1 can then be set with the other
parameters fixed.

As can be seen in Figure 5, the data is heteroscedastic.
This means that the parameter estimates could be biased
to produce a better fit in the area of high residuals (faster
growing trees) at the expense of the fit in the area of lower
variance. The standard methods to handle this are to include
variance weighting (Zuur et al. 2009) or transformation of
the response variable. However, careful analyses of residuals
together with cross-validated estimations of RMSE and model
parameters did not expose any significant non-symmetrical
behaviour, thus supporting the position that the parameters are
not biased. Secondly, the higher variance is associated to high
growth and large tree diameter, which means that trees of high
economic importance are given a high weight in the regression.
Consequently, if the heteroscedasticity has had an effect on the
estimation, valuable trees have got higher prediction accuracy
at the expense of non-commercial tree prediction, which is an
acceptable effect when the models are applied to management
simulation. Therefore, the heteroscedasticity was left without
action.

Model performance
The cross-validation shows small differences between training
and test-fold mean values of RMSE, indicating stable model
performances. Some individual folds display larger deviations,
particularly folds 9 and 10 (Figure 2). However, tree-group-to-
tree-group variation is much larger than fold-to-fold variation.
Thus, even for the folds with the largest deviations, the RMSE of
the same tree group is not significantly worse when it is used as
test sample compared with when it is part of the training sample.
Therefore, it can be concluded that the model structure is robust
to stochastic sample variation.

The validity of the models is difficult to compare with previ-
ous research since few corresponding models exist covering a
similar geographical range. The model references that do exist
also often have an empirical/statistical approach and do not
express a clear intention to strive towards simplicity and few
predictors. The distance-dependent model presented by Bianchi
et al. 2020b) serves as the most relevant reference, although
it is a statistical model that depends on 10 predictor variables.
They presented a lower RMSE from cross-validation (3.21 cm).
The other distance-dependent models (Tham 1989; Pukkala and
Kolström 1991; Pukkala et al. 1994; Pukkala et al. 1998; Vetten-
ranta 1999) presents R2-values ranging between 0.57 and 0.82.
The distance-independent tree models that are calibrated with
uneven-sized stands and without age as a predictor (Andreassen
and Tomter 2003; Pukkala et al. 2009; Pukkala et al. 2013; Bianchi
et al. 2020a) display R2-values (when present) ranging from
0.49 to 0.88. Given that the models SD and SDC of this study
are relatively simple (2 or 3 input measures), do not involve
any distance-independent stabilizing stand measures, and are
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Figure 8 Subject tree annual ring widths from an uneven-sized growth competition case, calculated with the SDC-model (included predictors; S = tree
size, D = inter-tree distance, and C = crown ratio). All diagrams represent the same group of competing trees with settings kept constant except for the
respective x variable displayed, i.e. (a) subject tree dbh (diameter at breast height), (b) distance to large competitors, (c) crown ratio and (d) dbh of large
competitors. Tree group start setting; total basal area = 20 m2/ha, crown ratio = 0.6, number of large competitors = 4, dbh of large competitors = 35 cm,
dbh of small competitors = 8 cm, all trees are Norway spruce and all competitors are located 6 m from the subject tree. Group basal area is kept
constant by adjusting the number of small competitors according to the sizes of the large trees (initial number of small competitors depending on
subject tree dbh are 29, 43 and 48, respectively). Dist is distance between large competitors and the subject tree.

ultimately motivated by spatial ITS optimization aims, the per-
formance appears to be satisfactory compared with existing
models.

Some research suggests that distance-dependent models are
able to reliably predict growth in stand types outside the range of
the calibration data (Clutter et al. 1983; Vanclay 1994). This study,
however, indicates systematic simulation bias for applications
in even-sized structures when calibration is done with uneven-
sized data.

Given the data used for the calibration, the model can be
expected to be valid for uneven-sized Norway Spruce in Swedish
boreal conditions at latitude 56◦–58◦ and medium to fertile site
qualities. The proportion of other species should be moderate
(<40 per cent). Since the models depend on spatial information,
general use is hampered by limited access to coordinate set

data, but the rapid technical development within forest mensu-
ration can be expected to remove that shortage in the future.
The spatial model format, in which competition is defined with
both distance and tree size, enables unlimited ITS management
analyses since all the options for creating cost-efficient field
recommendations with different combinations of metrics are still
available. With access to spatial models, future research will
resolve whether distance-dependent information is necessary for
optimal ITS management, or if it is sufficient to rely on non-
spatial growth models.

Future model development
This study shall primarily be considered as a pilot study based
on a limited data set. Considering the presented results and
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Figure 9 The distance weighing function and its area integral displayed as
relative accumulated competition, assuming an even spatial distribution
of competitor basal area.

the partly theoretical approach, the models should be suitable
for further extension with additional predictors and calibration
data with greater coverage. Following the results of Forrester
(2021), the candidates for a fourth and a fifth predictor are, in
the same order, variables indicative of site quality and treatment.
Apart from broadening the geographical area and developing
models for additional species, species-specific calibration of the
parameter (w) would also make the models applicable to a wider
range of situations.

Model performance could potentially be refined if a more rep-
resentative measure for the crown ratio was applied. Since crown
length was measured from the height of the lowest living branch,
an inevitable consequence is that stem sections with only frag-
mented coverage of green needles are in many cases included
in the living crown. Estimates that more accurately represent the
capacity of the canopy to absorb light could probably improve
model prediction, e.g. by defining living crown base as height to
the lowest whorl with at least three living branches (Burkhart and
Tomé 2012, p. 100). Another option for developing the model
structure is to incorporate subject tree size as a predictor for the
distance weighting function. Pretzsch (2009, p. 296) points out
that a defined search radius is only adequate for a certain tree
size. In the current distance function, weight is solely decided by
the distance regardless of subject tree size.

Conclusion
The distance-dependent models presented are well suited for
application in simulation studies of uneven-sized stand struc-
tures. Specifically, the calibration range and model structure
make them appropriate for use within management simula-
tion of individual-tree selection of Norway spruce dominated
stands in southern Sweden. The model structure allows for man-
agement optimization of influential selection criteria such as
subject tree target diameter, subject tree crown ratio, competitor

distance and competitor tree size. The format of the models
should make them suitable for further extension with additional
predictors and calibration data with greater coverage.
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