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Briefing

The enemy already controls large parts of our territory. The enemy has located the headquarters of one army brigade to our area and has started using our railroad, transporting troops and armed vehicles.

Most enemy resources are being transported to other battle fields. In our neighbourhood, there is one enemy tank, used for local protection of the brigade staff and the railroad. The enemy tank commander has optimized a randomized patrol schedule.  

We constitute one ranger platoon and have very limited contacts with higher units. We have sufficient supplies for one qualified mission, including explosives, ammunition, food and water. After such a mission, we will have to try to retire to friendly units behind our own lines.

The decision problem

How should we act? 

How will the enemy act? 

What result can we expect if we act optimally?

These problems have been well described and analyzed in classical game theory.

In this paper, we will start by defining the mixed strategy Nash equilibrium. 

Then, we will use comparative statics applied to the mixed strategy Nash equilibrium. 

We will investigate the qualitative effects of changes in the revenues and costs, represented by the elements of the game matrix, on the optimal frequences of our strategy selections.

We will also investigate the qualitative effects of changes in one game matrix element on the expected value of the game under optimal play.

If the "value" of one particular enemy target increases (our expected net gain from attacking that target increases if it is not protected by the enemy tank), then it will be shown that our optimal frequency of attacking that particular enemy decreases (ceteres paribus). 

In some cases, if the value (the element in the game matrix) of one particular enemy target increases (if not protected) then the value also increases if it happens to be protected. These two value changes both affect the optimal Nash equilibrium. In different cases, the increasing target values imply that our optimal attack frequences increase, are unchanged or decrease.

It will be shown that the optimal frequency of one strategy may increase, be unchanged of decrease if the value of one enemy target increases. The direction of change is a function of all the elements in the game matrix. 

Hence, it is hard or even impossible to construct general tactical guidelines concerning target selection that really are optimal in different situations.

Ranger platoon commanders need to estimate the elements of the game matrix in the field, using locally available information together with target value parameters sent from the headquarters. 

Then, optimal local platoon level decisions have to be based both on the locally obtained information and on the centrally provided information.

Analytical solution with comparative statics
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Assumption A1.
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A1. guarantees that:
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	Probability that Blue attacks Red target T1.
	Probability that Blue attacks Red target T2.
	Probability that the Red tank protects T1.
	Probability that the Red tank protects T2.

	x
	(1-x)
	y
	(1-y)


Expected net gain of Blue:
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The Nash equilibrium is determined by these equations:


[image: image7.wmf]122211122122

()()0

y

x

p

aaaaaa

¶

=-+--+=

¶



[image: image8.wmf]212211122122

()()0

x

y

p

aaaaaa

¶

=-+--+=

¶


The Nash equilibrium is:
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Comparative statics:

In the following section, a number of derivatives are determined via the quotient rule. In all cases, f denotes the nominator and g denotes the denominator of the expression in question. This simplified notation is used in order to make all steps obvious to the reader and at the same time to save space. 
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Summary of the comparative statics analysis:
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	Case
	
	Optimal Blue Response
	Optimal Red Response

	#1
	The net gain of Blue from attacking red target T1 (if T1 is defended by Red) increases.
	Attack T1 with higher probability.

(Attack T2 with lower probability.)
	Allocate more defence resource time to T1.

(Allocate less defence resource time to T2.)



	#2
	The net gain of Blue from attacking red target T1 (if T1 is not defended by Red) increases.
	Attack T1 with lower probability.

(Attack T2 with higher probability.)
	Allocate more defence resource time to T1.

(Allocate less defence time resources to T2.)



	#3
	The net gain of Blue from attacking red target T2 (if T2 is defended by Red) increases.
	Attack T2 with higher probability.

(Attack T1 with lower probability.)
	Allocate more defence resource time to T2.

(Allocate less defence resource time to T1.)



	#4
	The net gain of Blue from attacking red target T2 (if T2 is not defended by Red) increases.
	Attack T2 with lower probability.

(Attack T1 with higher probability.)
	Allocate more defence resource time to T2.

(Allocate less defence time resources to T1.)




Expected Blue net gains from game matrix element changes: 
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However, in Nash equilibrium, 
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Hence, 
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Hence, in the two by to case, 
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We conclude that:
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Optimal Blue (and Red) response(s) to non-optimal Red (and Blue) strategies 
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The dynamics of adaptive strategy frequency changes
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A quantitative solution to the decision problem 

In order to make it possible for the ranger platoon commander to optimize the decisions based on local information, a "user friendly" tactical game optimizer has been constructed.

Results:

The tactical decision problems of isolated (Blue) units with limited supplies behind enemy (Red) lines have been analysed with mixed strategy game theory. 

The Nash equilibrium mixed attack and defence strategies have been determined in general form. 

The sensitivity of the Nash equilibrium to possible parameter changes has been determined in general form. 

If the value of an enemy target increases, it may be optimal to increase, leave unchanged or to decrease the probability of attack. Detailed analysis is necessary. 

The optimal Blue (and Red) response to non-optimal Red (and Blue) strategies has been described. 

The dynamics of adaptive strategy frequency changes has been analysed. 

Easily used INTERNET software has been developed for simple decentralized optimisation of the mixed strategies. 
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