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Abstract
First, the observed CO2 level in the atmosphere, recorded by NOAA (2022) at the Mauna Loa observatory, and 
the global industrial CO2 emissions, reported by EDGAR (2021), European Commission, are investigated, from 
1990 until 2021. Then, a differential equation model is developed, based on two hypotheses, that explains how 
these time series interact. The hypotheses of the explaining model are tested with regression analysis, and it is 
demonstrated that no hypothesis can be rejected on statistical grounds. The parameters of the CO2 
concentration model are determined with high t-values and low p-values. The model is used to determine the 
time path of the CO2 concentration of the natural system without industrial emissions, for arbitrary initial 
conditions. This system has a unique and stable equilibrium at 262 ppm. With constant industrial emissions, 
the equilibrium is found at a higher level, which is shown with an explicit equation. Comparative statics analysis 
shows how the equilibrium is affected by alternative parameter adjustments. An extended version of the 
natural differential equation, with a forcing function, representing the time paths of industrial emissions, is 
developed. The industrial emissions are modeled as a quadratic function of time. The general function of the 
time path of the CO2 concentration of the natural system under the influence of industrial emissions, is 
determined for arbitrary initial conditions and parameters of the industrial emission function. The CO2 time 
path function is analytically verified. Then, it is also empirically tested and found to be able to reproduce the 
historical CO2 observations with high precision. Then, the time paths of the future CO2 concentrations are 
calculated, for six alternative levels of change of the industrial emissions, from -1.5 Gt/year to +1.0 Gt/year, 
from the year 2022 until 2100. These results are presented as a function and as graphs. The net CO2 emissions 
can also be reduced over time, if forestry is gradually intensified. The rational intensity of this investment 
process is determined, taking the time path of the CO2 level into consideration, during an arbitrary time 
interval. An explicit function for the optimal forestry intensification level, based on all CO2 time path function 
parameters, the marginal cost of the CO2 concentration, time interval parameters, rate of interest and different 
cost function parameters, is derived and presented. 
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The differential equation of the CO2 concentration in the atmosphere:

Fundamental theory, mathematics and statistical estimation.

Time path of the CO2 concentration: 

Determined without and with arbitrary industrial emissions.

Historical CO2 observations:

Reproduced by the model.

The CO2 concentration equilibrium:

Exists, is unique and stable.

Intensified sustainable forestry: 

Reduces the future CO2 concentration.

The optimal forestry intensification level: 

Is determined as an explicit function of all parameters.
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Figure 1.

The CO2 concentration in the atmosphere, in the unit ppm, 

according to the observations from the Mauna Loa observatory. 

Source: NOAA (2022).
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Figure 2.

The CO2 level in the atmosphere, in the unit Gt, according to the 

observations from the Mauna Loa observatory and variable 

transformations. Sources: NOAA (2022) and O’Hara (1990).
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, 0, 0x a bx a b= +  

( )x a bx f t= + +

The natural system:

The natural system + industrial net emissions:

CO2 concentration 

in the atmosphere
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Column Variable Source 

1 Year  

2 CO2 concentration in the atmosphere (ppm) NOAA (2022). 

3 CO2 mass in atmosphere (Gt) NOAA (2022). O´Hara (1990). 

4 Industrial emissions, CO2, observations (Mt) EDGAR (2021). 

5 Change per year of the Industrial emissions, until the next 
observation 

EDGAR (2021). 

6 Industrial emissions, CO2, observations and values 
determined via linear interpolation (Mt) 

EDGAR (2021). 

7 Industrial emissions, CO2, observations and values 

determined via linear interpolation (Gt) 

EDGAR (2021). 

8 Differences of CO2 mass in atmosphere (Gt) NOAA (2022). O´Hara (1990). 
9 Differences of CO2 mass in atmosphere (Gt) - Industrial 

emissions, CO2, observations and values determined via 
linear interpolation (Gt) 

NOAA (2022). O´Hara (1990). 

EDGAR (2021). 

10 Differences of CO2 mass in atmosphere (ppm) - Industrial 
emissions, CO2, observations and values determined via 
linear interpolation (ppm) 

NOAA (2022). O´Hara (1990). 
EDGAR (2021). 

 

Empirical data and transformations
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Figure 3.

The CO2 emissions to the atmosphere, e_Gt, in the unit Gt, the change during one year of the CO2 level 

in the atmosphere, delta_x_Gt, and the yearly change of the CO2 level in the atmosphere reduced by the 

emissions, delta_(x-e)_Gt, in the unit Gt. Sources: NOAA (2022), EDGAR (2021) and O’Hara (1990).

Change during one year of the CO2

level in the atmosphere. 

Change during one year of the CO2

level in the atmosphere reduced by the 

industrial net emissions.

(These negative values also have a 

negative time trend. More CO2 is 

absorbed now than earlier, most likely 

because of the increasing CO2 level.)

The industrial net CO2 emissions to 

the atmosphere per year.
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, 0, 0x a bx a b= +    
 

(1) 
In the empirical data, the time derivative of x is also affected by f(t), which represents the total 

industrial emissions as a function of time. 

( )x a bx f t= + +  

 
(2) 

We may reformulate (2) to get (3) and (4). 

( ) ( ) ( )x t f t a bx t− = +  

 
(3) 

 

In regression analysis, we estimate y(t) as a function of the parameters a, b and the value of x(t). 

Compare (4) and (5) and the Appendix. 

( ) ( ) ( )y t x t f t= −  

 
(4) 

 

( ) ( )y t a bx t= +  
(5) 
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Table A2.

Regression in Gt.

Regression Statistics

Multiple R 0,514535803

R Square 0,264747092

Adjusted R Square 0,239393544

Standard Error 3,820257244

Observations 31

ANOVA

df SS MS F Significance F

Regression 1 152,3974368 152,3974368 10,44221057 0,003061931

Residual 29 423,236597 14,59436541

Total 30 575,6340338

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95,0% Upper 95,0%

Intercept 32,1679952 14,47537138 2,222256988 0,034225527 2,562536581 61,77345382 2,562536581 61,77345382

x_Gt -0,015712373 0,004862343 -3,231440943 0,003061931 -0,025656981 -0,005767766 -0,025656981 -0,005767766
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Table A3.

Regression in ppm.

Regression Statistics

Multiple R 0,514535803

R Square 0,264747092

Adjusted R Square 0,239393544

Standard Error 0,489505459

Observations 31

ANOVA

df SS MS F Significance F

Regression 1 2,502116493 2,502116493 10,44221057 0,003061931

Residual 29 6,94885224 0,239615594

Total 30 9,450968733

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95,0% Upper 95,0%

Intercept 4,121819095 1,854789575 2,222256988 0,034225527 0,328348476 7,915289714 0,328348476 7,915289714

x_ppm -0,015712373 0,004862343 -3,231440943 0,003061931 -0,025656981 -0,005767766 -0,025656981 -0,005767766
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Table 1. 
Estimated regression parameters when the unit of x(t) is Gt. y(t) and the time derivative of x(t), have 
the unit Gt/year. The parameters have five value figures in this table. All of the regression results and 
the data are found in the Appendix. 
 

Parameter Estimated Value Standard Error P-value 
a  32.168 14.475 0.034225 

b -0.015712 0.0048623 0.0030619 
 

Table 2. 
Estimated regression parameters when the unit of x(t) is ppm. y(t) and the time derivative of x(t), 
have the unit ppm/year. The parameters have five value figures in this table. All of the regression 
information and the data are found in the Appendix. 
 

Parameter Estimated Value Standard Error P-value 

a  4.1218 1.8548 0.034226 

b -0.015712 0.0048623 0.0030619 
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In case the industrial emissions would be constant and equal to fc, then in CO2 equilibrium, xc, 

equation (6) is satisfied, which leads to (7). 

 

( )0 ( ) 0c ct
x f t f a bx f



 
=  =  + + = 

 
 

 
(6) 

 

c
c

a f
x x

b

+ 
= = − 

 
 

 
(7) 

 

Without industrial emissions, the equilibrium is (8). 

0
0

c
c f

a
x

b=

 
= −  

 
 

 
(8) 
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We can now use equation (8) to determine the equilibrium value of the natural system. When we use 

the unit Gt, as in Table 1., we get the result in equation (9).  

 

0

32.168
2047.4( )

( 0.015712)c
c f

x Gt
=
= − 

−
 

 
(9) 

 

If we use the unit ppm, as in Table 2, we get the result in equation (10). 

 

0

4.1218
262.33( )

( 0.015712)c
c f

x ppm
=
= − 

−
 

 
(10) 

 

Pre industrial equilibrium
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Following the principles by O’Hara (1990), the following transformation rules have been applied: 1 

ppm (CO2) can be transformed to 2.13*3.664=7.80432 Gt CO2. 1 ppm by volume of atmosphere CO2 

=2.13 Gt C. 1 g C=0.083 mole CO2 =3.664 g CO2. Hence, we may change units, and go to the unit ppm 

from the unit Gt, if we divide the figure in Gt by 7.80432. 

In equation (11), we find that the ratio is very close to the correct figure, also if we only use five value 

figures. 

0

0

( ) 2047.4
7.8047

( ) 262.33

c

c

c f

c f

x Gt

x ppm

=

=

   

 
(11) 
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Comparative statics analysis of the CO2 equilibrium with constant emissions:  

If the CO2 level in the atmosphere is in equilibrium and the exogenous industrial emissions are 

constant over time, for instance zero, then equation (12) is satisfied. 

( , , , ) (.) 0c c c cG a b x f x a bx f= = + + =  

 
(12) 

 

Total differentiation of the equilibrium condition gives (13). 

0c c cdG da db x b dx df= +  +  + =  (13) 
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1

0

0

c

c

db df

dx
b

da

−

= =

= − 

1

0

0

c

c
c

da df

dx
b x

db

−

= =

= − 

1

0

0c

c da db

dx
b

df

−

= =

= −  The equilibrium CO2 level in the atmosphere is a strictly 
increasing function of the exogenous industrial emission level. 

The CO2 equilibrium level in the atmosphere is a strictly 

increasing function of b, which means that it is a strictly 

decreasing function of the natural absorption level.

The equilibrium CO2 level in the atmosphere is a strictly 
increasing function of the level of the natural emissions. 
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Explicit dynamics analysis of the natural system: 

Now, we will derive the CO2 level in the atmosphere as an explicit function of time, in case we have a 

natural system, (23), without any exogenous industrial emissions.  

, 0, 0x a bx a b= +    

 
(23) 

 

(23) can be written as (24).  

x bx a− =  

 
(24) 

 

First, we study the homogenous equation, (25) and try to find an explicit solution. 

0x bx− =  

(25) 
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We assume that the homogenous solution, ( )hx t  has the functional form found in (26). Z and  are 

two parameters. 

( ) t

hx t Ze=  
(26) 

 

The time derivative of the homogenous solution is found in (27). 

( ) t

hx t Ze=  

 
(27) 

 

Equations (28) to (31) give the value of  . 

( )0 0t tx bx Ze bZe 
 
− =  − = 

 
 

 
(28) 
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( ) 0tb Ze − =  
(29) 

 

( ) ( )0 0Z t b    −  − =  
 

(30) 

 

b =  
(31) 

 

The homogenous solution is reported in (32). This now contains one parameter that has not yet been 

determined, namely Z . Considerable efforts will be used to determine this parameter as a function 

of other relevant parameters, in the later part of this paper. 

( ) bt

hx t Ze=  
(32) 
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Particular solution: 

It is also necessary to determine the particular solution. We start with equation (33). 

( ) ( )x t bx t a− =  

 
(33) 

 

We assume that the particular solution is an arbitrary constant, as in (34).  

( )px t m=  
(34) 

As we see in (35), the time derivative of the particular solution is zero. 

( ) 0px t =  

 
(35) 

 

(33), (34) and (35) give (36) and (37). 

( ) ( )p px t bx t bm− = −  

 
(36) 
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bm a− =  
(37) 

 

(37) leads to the particular solution, namely equation (38). 

( )p

a
x t m

b

−
= =  

 
(38) 

The complete solution to the differential equation is the sum of the homogenous solution and the 

particular solution. Compare (39). 

( ) ( ) ( )h px t x t x t= +  
 

(39) 

 

The explicit form of the solution to the natural system is found in (40). 

( ) bt a
x t Ze

b
= −  

 
(40) 
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Since we already know that the value of b is strictly negative, it is clear that the homogenous solution 

(32) goes to zero as t goes to infinity. As a consequence, as we see in (41), the equilibrium is stable. 

Equation (40) also reveals that we have monotone convergence to the equilibrium. Furthermore, since 

the natural emission level is strictly positive, the equilibrium is strictly positive. Note that this 

equilibrium was also found in equation (8) and that the numerical values were derived in different 

units, in equations (9) and (10). 

( 0, 0)

lim ( ) ( ) 0
t
a b

a
x t x t

b→
 

= = −   

 
(41) 

 

The natural system converges to 
the ”Pre industrial equilibrium”.
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Explicit dynamics analysis of the natural system with added exogenous forcing: 

Now, we introduce exogenous (industrial) net emissions as an explicit function of time, in equation 

(42). This makes it possible to represent the future time path of alternative global CO2 emissions as a 

quadratic function of time. Certainly, also other functional forms could be used. The polynomial is 

however a flexible tool with suitable properties for the relevant applications that will follow. We may 

also use the function to model alternative forestry expansion strategies, where intensified forestry 

can lead to increased absorption of CO2. 

2

0 1 2( )f t k k t k t= + +  
 

(42) 

When (42) is added to the natural system differential function, we get (43). 

( ) ( ) ( ) , 0, 0x t a bx t f t a b= + +    

(43) 

 

The explicit version of (43) is (44). This may also be transformed to (45).  

2

0 1 2( ) ( )x t a bx t k k t k t= + + + +  

 
(44) 
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From (45) we understand that the solution to the homogenous solution, (32), will be useful also 

when we solve (45). 

2

0 1 2( ) ( )x t bx t a k k t k t− = + + +  

 
(45) 

 

Determination of the particular solution: 

Now, we need a more complicated functional form of the particular solution than when we only had 

to deal with the natural system, without changing exogenous emissions, as in equation (34). 

2

0 1 2( )px t c c t c t= + +  

 
(46) 

 

The time derivative of the particular solution is (47). 

1 2( ) 2px t c c t= +  

 
(47) 
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(45), (46) and (47) lead to (48). We have to determine the three parameters in the particular 

solution, found in (46), from equation (48). 

( )2 2

1 2 0 1 2 0 1 22c c t b c c t c t a k k t k t+ − + + = + + +  
 

(48) 

It is clear that (48) has to be satisfied for every possible value of t. In (49), the LHS and RHS 

expressions are written in a more convenient form. 

( ) ( ) ( ) ( )2 2

1 0 2 1 2 0 1 22c bc c bc t bc t a k k t k t− + − + − = + + +  
(49) 

 

We realize that the equation system found in (50) has to be satisfied. That system will hopefully be 

useful to derive the correct parameters of the particular solution (46). 

1 0 0

2 1 1

2 2

2

c bc a k

c bc k

bc k

− = +


− =
 − =

 

 
 
 

(50) 
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In (51), the equation system in (50) is represented in matrix format. 

0 0

1 1

2 2

1 0

0 2

0 0

b c a k

b c k

b c k

− +     
     

− =
     
     −     

 

 
 

(51) 

We find that the system has a structure that makes it possible to solve it with a sequence of 

substitutions. If that would not have been the case, we could have used other methods from matrix 

algebra. From row 3, we instantly get the value of c2. This is shown in (52). 

( ) 2
23

k
row c

b

−
 =  

 
(52) 
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Then we move to row 2, which can be used to derive c1 , using c2 and some parameters. Compare 

equation (53). 

( ) 1 2 12 2row bc c k − + =  
(53) 

 

Equations (54), (55) and (56) lead to the value of c1. 

2
1 12

k
bc k

b

− 
− + = 

 
 

 
(54) 

 

2
1 1

2k
bc k

b
− = +

 

 
(55) 

 

 

1 2
1 2

2k k
c

b b

−
= −  

 
(56) 
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Finally, we can derive c0 via equations (57) to (60). 

( ) 0 1 01row bc c a k − + = +  
 

(57) 

 

0 0 1bc a k c− = + −  
(58) 

 

1 2
0 0 2

2k k
bc a k

b b
− = + + +  

 
(59) 

 

( )0 1 2
0 2 3

2a k k k
c

b b b

− +
= − −  

 
(60) 
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The particular solution (61) is found in explicit form in (62). 

2

0 1 2( )px t c c t c t= + +  
(61) 

 

( )0 21 2 1 2 2

2 3 2

2 2
( )p

a k k k k k k
x t t t

b b b b b b

− +  − −   
= − − + − +     

    
 

 
(62) 
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The CO2 level in the atmosphere, (63), is the sum of the homogenous solution and the particular 

solution.  

( ) ( ) ( )h px t x t x t= +  
(63) 

The homogenous solution is found in (64) and the CO2 level in the atmosphere is shown in (65). 

( ) bt

hx t Ze=  
(64) 

 

( )0 21 2 1 2 2

2 3 2

2 2
( ) bt

a k k k k k k
x t Ze t t

b b b b b b

− + − 
= + − − + − − 

 
 

 
(65) 
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Clearly, before we move further and apply function (65), it is important to verify that the function is 

correct. We use the following procedure: First we derive the time derivative of (65), namely (66). 

1 2 2

2

2 2
( ) bt k k k

x t bZe t
b b b

= − − −  

 
(66) 

Then, we remember the original differential equation (67). 

2

0 1 2( ) ( )x t a bx t k k t k t= + + + +  

 
(67) 

 

Equation (66) is defined from equation (68). 

1 2 2

2

2 2bt k k k
bZe t

b b b
 = − − −  

 
(68) 

Equation (69) is defined from equation (67). 

2

0 1 2( )a bx t k k t k t = + + + +  
(69) 
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We denote the difference between the expressions (68) and (69) by (70). Then, we find that the 

difference is zero, which means that the expressions are equal, as in equation (70).  

( )

1 2 2

2

0 2 21 2 1 2 2
0 1 22 3 2

2 2

2 2

bt

bt

k k k
bZe t a

b b b

a k k k k k k
b Ze t t k k t k t

b b b b b b

 − = − − − −

− + − 
− + − − + − − − − −  

  

 

 
 

(70) 

 

0 . . .Q E D − =  (71) 

 

In other words, the CO2 level in the atmosphere should really follow equation (65). 

( )0 21 2 1 2 2

2 3 2

2 2
( ) bt

a k k k k k k
x t Ze t t

b b b b b b

− + − 
= + − − + − − 

 
 

 
(65) 
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The general solution to the differential equation has been determined. Furthermore, we have already 

determined the empirically relevant values of two parameters, a and b, from the empirical data.  

Now, we will study the future of the CO2 level in the atmosphere, x(t), as a function of alternative 

levels of emissions and forestry activities. We define time zero as “the middle of year 2022”, namely 

July 1, 2022. Then, t=0. At that time, x(0) = x0. 

For alternative assumptions concerning emissions and forestry activities, we can also determine the 

parameters of the exogenous forcing function, f(.), namely k0, k1 and k2. With all of this information 

available, we can determine the final free parameter of the differential function, namely Z.  

From (65), we get the general function of x(t): 

( )0 21 2 1 2 2

2 3 2

2 2
( ) bt

a k k k k k k
x t Ze t t

b b b b b b

− + − 
= + − − + − − 

 
 

 
(72) 

We introduce the initial condition, the value of x(t) at t=0. 

( )00 21 2 1 2 2
0 2 3 2

2 2
0 0b

a k k k k k k
x Ze

b b b b b b


− + − 

= + − − + −  −  
 

 

 
(73) 
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Now, we can determine Z as a function of the parameters: 

( )0 1 2
0 2 3

2
1

a k k k
Z x

b b b

 − + 
=  − − −   

  
 

 
(74) 

 

( )0 1 2
0 2 3

2a k k k
Z x

b b b

+
= + + +  

 
(75) 

 

In the special case when k2=0, we have: 

( )
2

0 1
1 0 20k

a k k
Z Z x

b b=

+
= = + +  

 
(76) 

Now, with this information about Z as a function of the parameters, we have: 
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2 3 2

2 2
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and the special case: 
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(80) 

In Figure 4., equation (80) is used to predict the CO2 time path from 1990 to 2021. It is 

compared to the real observations. 



42

Figure 4.

The time path of the CO2 level in the atmosphere, x, from year 1990 until 2021, in the empirical data, x_ppm_real, and the prediction, x_ppm_Lpred, via the 

solution to the differential equation (80), based on the assumptions that the initial CO2 level in year 1990 and all other parameters are known. In year 1990, t = 

0. Parameter k0 is the emission level in 1990, namely 22.729 (Gt) and k1 = (the emissions in 2021 – the emissions in 1990) / (31 years). This calculation gives a 

k1 value of approximately 0.4269 (Gt per year). Tables 1 and 2 contain the other parameters. The differential equation prediction follows the true development 

rather well, but underestimates the latest CO2 levels slightly. One reason may be variations in the industrial emission increments. Still, the prediction model 

results replicate the true history rather well and we may believe in equation (80).
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In Figures 5 and 6, we see the predictions of the future CO2 development, from year 2022 

until year 2100, based on equation (80) and alternative emission strategies. It is clearly 

possible to reduce or increase the future CO2 concentrations very much, depending on the 

selected emission strategy. Note that, even if we select to reduce the emissions by 1.5 Gt/year, 

the CO2 concentration in the atmosphere will continue to increase from the 2022 level during 

several years, before it starts to decrease.  
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Figure 5.

Emission strategy conditional predictions of the CO2 level in the atmosphere, x (Gt), from year 2022 until 2100, via equation (80), based on the assumptions that the 

initial CO2 level in year 2022 and all other parameters are known. In year 2022, t = 0, and the initial value x0 is estimated from the values in 2020 and 2021. (3250.11-

3232.86) + 3250.11 = 3267.36 (Gt). Parameter k0 is the estimated emission level in 2022, assumed to be identical to the level in 2019, directly before the Corona 

pandemic, namely 37.911 (Gt). The time derivative of the emissions, k1, takes alternative values, from -1.5 to + 1.0 (Gt per year). Tables 1 and 2 contain the other 

parameters.
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Figure 6.

Emission strategy conditional predictions of the CO2 concentration in the atmosphere, x (ppm), from year 2022 until 2100, via equation (80), based on the 

assumptions that the initial CO2 level in year 2022 and the parameters were known. In year 2022, t = 0, and the initial value x0 is estimated from the values 

in 2020 and 2021. (3250.11-3232.86) + 3250.11 = 3267.36 (Gt). Parameter k0 is the estimated emission level in 2022, assumed to be identical to the level in 

2019, directly before the Corona pandemic, namely 37.911 (Gt). The time derivative of the emissions, k1, takes alternative values, from -1.5 to + 1.0 (Gt per 

year). Tables 1 and 2 contain the other parameters.
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The decision k1 and effects on the climate:
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( )0 1 1

0 2
( ) 1bt bt

a k k k
x t x e e t
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(81) 

 

The derivative of x with respect to k1 is found in (82). 

 

( )2 1

1

1btdx
b e b t

dk

− −= − −  
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It is important to know if this derivative can be signed. The following procedure makes this possible: 

1 0

0

t

dx

dk
=

=  

 

(83) 
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2
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0
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dk dt


  

 

(85) 

 

Now, we know that the derivative is zero for t=0 and increases with t. As a result, we get (86). 
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Hence, we know that the derivative of the CO2 level with respect to k1 is strictly positive, at every 

future point in time. As we see in equation (87), the derivative of the CO2 level with respect to k1 is a 

strictly increasing function of time. 

3

2

1

0btd x
e

dk dt
=   

 
(87) 
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If we are interested to control the climate via the CO2 level, we should have some objective function 

that makes it possible to know how the utility is affected by the CO2 level at different points in time. 

Let us consider a CO2 path dependent utility function, which is scaled in such a way that it can be 

expressed in economic terms. In the rest of this paper, the expression “utility” should be understood 

as the total economic value of the utility, from t = 0 until t = T. Note that we are interested in the 

climate from t = 0 until some future point time, T. 

( )( )1

0

,

T

U v x t k dt=   

 
(88) 
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The marginal utility of increasing k1 is found in (89). We assume that we prefer to have a colder 

climate, and for that reason want to have a lower CO2 level in the atmosphere. In other words; The 

derivative of v with respect to x should be strictly negative. 

( ) ( ) ( )1

1 10

. , , . 0

T
dU dv dx dv

t k dt
dk dx dk dx

=   

 
(89) 

 

We assume that k1 is a function of k1,I and k3, where the first part, k1,I, is caused by changes in 

industrial emissions and the second part, k3, is caused by increased net absorption of CO2 in forests, 

because of investments in more productive and sustainable forestry.   

1 1, 3Ik k k= −  (90) 

Obviously, the marginal utility of forestry investments (91), has the opposite sign compared to (89).  

( ) ( )1

3 10
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(91) 

 



50

The forestry investment optimization problem is found in (92). C(k3) is the investment cost function 

at a particular point in time during the investment process. The interest rate in continuous time is r. 

It is assumed that a particular level of “continuous investment” is selected, which for instance can 

mean that some new active forestry is started, each year, from time 0 until time T. Each year within 

this time interval, the area of “new forestry” increases with the same number of hectares. This type 

of action can for instance be made in very large regions in Canada and Russian Federation, where 

presently no active forestry can be found. It is natural to distribute such investments over time, in 

this way, since it takes considerable time to construct new infrastructure and to expand the 

capacities of industrial facilities and the labor force. The variable cost at time t is jk3t, where j is a new 

cost parameter.  

( )( )
3

3 3 1, 3

0 0 0

max ( ) ,

T T T

rt rt

I
k
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(92) 
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Clearly, parts of the cost functions can be placed outside the integrals. 

( )( )
3

3 3 1, 3

0 0 0

max ( ) ,

T T T

rt rt

I
k

C k e dt jk e t dt v x t k k dt − −= − − + −    

 

(93) 

As we see in (94), the first two integrals can be explicitly calculated. 
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In (95), we have the optimization problem in explicit form. 
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The first order optimum condition is: 
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The second order derivative of the objective function with respect to the forestry investment level is 

shown in (97). 

2 2
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(97) 

 

We assume that the rate of interest is strictly positive, that the investment process continues during 

a strictly positive time interval and that the cost function is strictly convex. In (98), we see that the 

objective function is a strictly concave function of the forestry investment level. 
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Hence, we have a unique maximum. Let us determine an explicit expression for the unique 

maximum. We assume that the derivative of the utility function with respect to the CO2 level is 

constant, namely v1. Alternative assumptions can of course be made, if some empirical facts can be 

shown to support such assumptions. The resulting first order optimum condition is found in (99). 
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   (99) 

Now, since we already know the derivative of the CO2 level with respect to k1, from (82), we get 

(100).  
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(100) can be further developed to (101), (102) and (103). 
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The last part of the expression (103) deserves a special treatment. We define that as W in equation 

(104). We are interested to determine the sign of W. 
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In (105), we find that W = 0 for T = 0. Equations (106), (107) and (108) make sure that W is strictly 

positive for strictly positive T.  

0, 0
0
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From equation (103), we get the optimal value of the marginal cost of the investment level, in (109). 

Since this marginal cost is a monotonically increasing function of the investment level, it will soon be 

possible to determine the optimal investment level from this value.  
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We assume that the optimal value of the marginal investment cost function is strictly positive (110). 
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We assume that the investment cost function can be approximated as a quadratic function. When 

empirical data becomes available, the parameters can be estimated.  

2

0 1 3 2 3 0 1 2, 0, 0, 0C g g k g k g g g= + +     (111) 

We also assume that the fix cost, g0, is comparatively small and does not make it more profitable to 

avoid all investments studied in this article. This is of course an empirical question, but in typical 

cases, g0 should be small. The marginal cost is found in (112). 
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(109) and (112) lead to (113). 
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We assume that the parameter g1 is sufficiently small to motivate a strictly positive investment level. 

(It is easy to show that, in an earlier “forestry investment equilibrium”, obtained when the utility of 

climate change was not considered, the investments took place until the marginal cost of expansion 

was equal to the marginal revenue of increased access to forest areas. Hence, this argument tells us 

that g1 can be expected to be very close to zero. This makes it highly probable that (114) is relevant. 
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Then, the unique and strictly positive optimal investment in higher CO2 absorption via forestry is 

given in (115). 
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OBSERVATIONS 1.

1.a. It is possible to model the dynamics of the CO2 level in the atmosphere via a 

differential equation. The formulated hypotheses, of how the CO2 level is affected by 

natural emissions and concentration dependent absorption, could not be rejected. 

1.b. The parameters were empirically estimated, with high precision, from the latest 

available empirical time series of observations of CO2 concentration in the atmosphere, 

and industrial emissions. 

1.c. It is possible to determine the time path of the CO2 concentration of the natural 

system without industrial emissions, for arbitrary initial conditions. 

1.d. This system has a unique and stable equilibrium, with an expected estimated value of 

262 ppm. With constant industrial emissions, the equilibrium would be found at a higher 

level, according to an explicit equation. 
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OBSERVATIONS 2.

2.a. Comparative statics analysis shows how the equilibrium is affected 

by alternative parameter adjustments. 

2.b. An extended version of the natural differential equation, with a 

forcing function, a quadratic function of time, representing the time 

paths of industrial emissions, has been developed. 

2.c. The general function of the time path of the CO2 concentration of 

the natural system under the influence of industrial emissions, has been 

determined for arbitrary initial conditions and parameters of the 

industrial emission function. 
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OBSERVATIONS 3.

3.a. The CO2 time path function has been analytically verified and empirically tested and 

found to be able to reproduce the historical CO2 observations with high precision. 

3.b. The time paths of the future CO2 concentrations have also been calculated, for six

alternative levels of change of the industrial emissions, from -1.5 Gt/year to +1.0 Gt/year, 

from the year 2022 until 2100. 

3.c. The net CO2 emissions can be reduced over time, if sustainable forestry is gradually 

intensified. The rational intensity of this investment process has been determined. 

3.d. An explicit function for the optimal forestry intensification level, based on all CO2 time 

path function parameters, the marginal cost of the CO2 concentration, time interval 

parameters, rate of interest and cost function parameters, has been derived. 
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Optimal management of the climate: FIRST STEP:

As a first step, we have to know, and agree about, the economic value of 

decreasing the CO2 concentration by 1 ppm. 

(If we can not agree about that, we will not agree about rational investment levels in 

emission reductions and/or optimal areas of intensified forestry.)

For these reasons, the author hopes and suggests that United Nations initiates an 

international research and negotiation process where the fundamental principles 

and facts of relevance to managing the CO2 concentration problem are in focus. 

In this work, the analyses and results presented in this paper can hopefully be 

useful as a starting point.



Conclusions:
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The differential equation of the CO2 concentration in the atmosphere:

Fundamental theory, mathematics and statistical estimation.

Time path of the CO2 concentration: 

Determined without and with arbitrary industrial emissions.

Historical CO2 observations:

Reproduced by the model.

The CO2 concentration equilibrium:

Exists, is unique and stable.

Intensified sustainable forestry: 

Reduces the future CO2 concentration.

The optimal forestry intensification level: 

Is determined as an explicit function of all parameters.
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