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PREFACE

The Society of American Forester's Systems Analysis Working Group sponsored its first
major Symposium in Athens, Georgia in 1975 and followed it up with a second Symposium in
the same location in 1985. The third symposium was held at the Asilomar Conference Center
in Pacific Grove, California in 1988. The fourth Symposium was held in Charleston, South
Carolina in 1991. The fifth was held in Valdivia, Chile in 1993. These proceedings contain the
papers of the sixth symposium held in Pacific Grove in 1994.

There were 53 papers presented by participants from 13 countries. These included: USA,
Canada, Sweden, Denmark, Finland, Chile, Mexico, Brazil, Australia, New Zealand, Japan,
China, and Indonesia.

Larry S. Davis made preliminary arrangements and social arrangements for the meeting and
J. Keith Gilless handled registration and onsite facilities supported by the Department of
Environmental Policy and Management, University of California, Berkeley.

J. Douglas Brodie handled mailing and program organization and John Sessions and Doug
Brodie compiled and organized the proceedings supported by the Department of Forest
Engineering and the Department of Forest Resources, Oregon State University. Publishing of
the proceedings was made possible through the generous support of the E4 Working Group
and the USDA Forest Service. Peter Dress, Brian Turner, Peter Lohmander and Andre
LaRoze provided discussion leadership in the open forums.

The participants are always the deciding factor in the success of these meetings and the level
of domestic and international participation is an increasingly satisfying aspect of attendance.
The fine fall weather and unequalled maritime scenery of the Monterey area contributed to the
meeting success. We look forward to the next meeting scheduled internationally or in the
Southern USA in 1997.
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RESERVATION PRICE MODELS IN
FOREST MANAGEMENT: ERRORS IN
THE ESTIMATION OF PROBABILITY
DENSITY FUNCTION PARAMETERS
AND OPTIMAL ADJUSTMENT OF
THE BIAS FREE POINT ESTIMATES

by
Peter Lohmander
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ABSTRACT: Optimal reservation price
strategies applied to dynamic forest
harvesting problems are discussed. The
sensitivity of the expected objective
function value in such models to timber
price probability density function
parameter estimation errors, is
investigated. This is important since the
number of relevant price observations
generally is low. The analysis explicitly
treats normally distributed prices. Mean
and variance estimation errors are studied.
The expected objective function is
approximated as a third order polynomial
function of the two dimensional estimation
error. It is found that it is better to
underestimate than to overestimate the
mean (and/or the variance) of the
stochastic price when the optimal
reservation price strategy is determined (if
the absolute value(s) of the estimation
error(s) is (are) the same in both cases.).
Hence, we should not use the bias free
estimate(s) of the parameter(s) but adjusted
value(s). First, the optimal adjustment is
determined as a function of the number of
relevant price observations via the
Newton-Raphson method. Then, the
optimal objective function value (calculated
with optimal estimate adjustment) is
determined as a function of the number of
relevant price observations. Prices and
costs from Sweden and a typical stand
growth function are used to illustrate the
general principles and to derive numerical
results.

KEYWORDS--Adaptive forest harvesting,
estimate adjustment, stochastic dynamic
programming, reservation price.




INTRODUCTION

During the latest decades a large number
of applications of reservation price models
have been reported from forestry. A
number of those are found in the reference
list. It has been found that considerable
economic gains can be obtained in case
those decision models based on sequential
information and decisions are used instead
of deterministic long term harvest planning
models. The usual assumption has been
that the parameters of the price probability
density function are known when the
optimal reservation price strategy is
calculated. Usually, old price observations
have been used in the estimation of the
probability density functions.

Clearly, in most cases, the relevant
historical price series are short and the
numbers of "relevant” observations are
low. Hence, at least two important
estimates of properties of the price
probability density function should be
expected to contain errors: the mean and
the variance. In particular the price
variance is important to the reservation
price strategy. Not even the functional
form is known with certainty. In lack of an
obviously relevant theory with respect to
this, we may assume that the probability
density function is Normal and try to
reject that hypothesis with some test such
as the Chi-quare test. This has sometimes
been done.

However, we must be aware that the
number of observations usually is low. Is
the true density function Normal or
perhaps triangular? It usually takes lots of
observations to decide which of these
possible candidates is the best. The
triangular and the Normal distributions
differ manily in the shape of the tails. In
some problems, this may not matter very
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much to the results. In adaptive problems,
however, the tails are very important.

The general properties of the tails of
probability density functions have been
investigated by Fisher and Tippett (1928),
Berman (1964, 1982), Haan (1976), Davis
(1979) and by Leadbetter, Lindgren and
Rootze’'n (1983). An example of a
practically interesting paper for ocean
engineering purposes is Lindgren and
Rychlik (1982). Timber prices and sea
waves have similarities. Recent papers on
reservation prices in forestry, adaptive
harvesting and related issues, have been
written by Risvand (1976), Lohmander
(1985, 1987, 1988a, 1988b, 1994a, 1994b,
1994¢c), Kaya and Buongiorno (1987,
1989), Brazee and Mendelsohn (1988),
Haight (1990, 1991), Gong (1994),
Morling (1994), Petersson (1994), Stahl
(1994) and Stihl, Carlsson and Bondesson
(1994).

In adaptive forest harvesting, we wait for
good prices and are very interested in the
probabilities of the very highest prices, the
prices in one of the tails. In a similar way,
in "extreme value theory" and engineering
applications, the tails of distributions are
the most interesting parts. If you should
construct an oil platform or a bridge, you
want to know the probability that the sea
waves are higher than let us say 28
meters. Such waves are extreme in most
areas and most wave observations may be
below five meters. Perhaps you have never
even observed one wave above 25 meters.
Still, the probability of such a wave will
determine how you should build your
construction.

Lindgren and Rootzen (1986) write:

" - For example, an important design
parameter in offshore construction, is the



height ul00 of the "hundred year wave".

" A more detailed analysis concerns the
interplay between a stochastic load process
and the dynamical properties of a structure

In a similar way, it is obvious that the
probability density function of timber
price, and the frequency of prices above a
particular level, are not the only things of
importance to the forest owner. It is
necessary to consider the price probability
density function, the growth of the forest
stand and other technical questions
simultaneously.

The reservation price is mostly an
increasing function of the price variance,
ceteres paribus. (Formal proofs are
complicated and may be found in
Lohmander (1987).) Hence, if the
gstimated variance is higher than the true
variance, the reservation prices derived
from the estimated variance will be higher
than what they should be. Then, we may
never get prices above the reservation
price. Obviously, we would in that case
wait for good prices for ever and never get
any harvest revenues. If, on the other
hand, the estimated price variance is lower
than the true variance, the reservation
prices are lower than optimal and we tend
to harvest even if the price is too low to
motivate this. We do get harvest revenues
but the expected present value is not

In a similar way, the reservation prices are
increasing functions of the mean of the
distribution. Hence, if we over- or under-
estimate the mean, we get problems of the
same npature as when we over- or under-
estimate the variance. Clearly, it seems
more dangerous to overestimate than to
underestimate the price variance and the
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mean. Furthermore, the lowest possible

variance estimate is zero. With a zero

variance estimate we should harvest as
soon as the present value is at least as high
as the present value in a deterministic
problem of a similar nature. Usually, the
expected objective function value using
this criterion is higher than the
deterministic present value. This, in turn is
usually significantly greater than zero.

QUESTIONS AND STRUCTURE OF
THE PAPER

In this paper, we will investigate the
following: - How sensitive is the expected
present value in a typical forest
management harvest optimization problem,
based on a reservation price strategy, to
price mean and variance estimation errors?

First, the reservation prices are optimized
based on the estimated (with error) price
mean and variance. Then, the expected
present value is determined from the true
price mean and variance and the
reservation prices which are not optimal in
the true mean and variance case (calculated
from the estimated price mean and
variance).

The expected present value in the harvest
optimization problem is described as a
function of the price mean and variance
estimation errors. If the errors are zero,
the expected present value is maximized.
If the price mean OR variance error
increases or decreases, the expected
present value decreases. However, if one
error increases and the other decreases
(from zero), the errors affect the derived
reservation prices in different directions.
The reservation prices may in that case
still be optimal in the true problem. The
expected present value is approximated as
a two dimensional third order polynomial
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Figure 1. Real stumpage price (price - harvest cost) per cubic metre, Sweden. Source:

National Board of Forestry (1993).

function of the estimation errors. This
function is highly signifficant.

Next, we assume that, in different
problems, we make estimates of the true
price mean and variance, based on
available price series. We will almost
never get the true means and variances,
but estimates with errors. The estimates
are free from bias: The expected estimates
are the true values. We determine the
probability density function of the
estimated mean and variance.

Then, the question is: What is the
expected present value in the forest
harvesting problem considering the fact
that we have errors in the parameter
estimates? Is it optimal to adjust the
estimated price mean and/or variance? The
expected present value is more negatively
affected if the price mean OR variance is
overestimated than if it is underestimated,
if the absolute errors are the same in both
cases. (This is found by inspection of the
third order polynomial which is estimated.)
Hence, it turns out that it is optimal to
decrease the price mean OR variance from
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the unbiased estimate. We will find that
the optimal adjustment is a function of the
number of observations. The reason is that
the probability of large errors in the
estimates decreases with the number of
observations.

If the number of observations is very low,
the mean should be adjusted with about
-4%. As the number of observations
increases, the optimal adjustment
monotonically converges to zero from
below. Compare Figure 14.

EMPIRICAL BACKGROUND

The net prices, in the rest of this paper
called "prices" have been very far from
constant during the latest decades. This is
shown in Figure 1. This is the main reason
why it is interesting to consider adaptive
optimization in forestry.

Clearly, in case prices are stationary and
they sometimes are much higher than the
mean value, we should wait for the high
prices. The question is then how selective
we should be or which "reservation price"
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Figure 2. Estimated mean and variance for different horizons. If the horizon contains 2 (=
A) to 8 (= B) periods (of five years each), the estimated mean is close to 200 SEK and the
estimated standard deviation is close to 50 SEK ( = 25%).

we should select. Usually, one can show
that the optimal reservation price is a
function of time and all economic and
biological parameters in the problem. It is
important to know the probability density
function of price. It is interesting to know
the mean and the standard deviation of
price and certainly the shape of the
probability density function.

In this paper, we will assume that we have
normally distributed prices and hence that
the only interesting parameters are the
mean and the standard deviation. In Figure
2., we see how the estimates of the mean
and the variance are affected if we use
different numbers of observations from the
time series of price. In every case, we use
the latest observations in the series. There
are five years between each used
observation (marked in Figure 1.). The
reason is that the sample autocorrelation
function shows that prices that are close in
the time dimension are rather similar. (The
autocorrelation function is strictly
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positive.) For lags of more than five years,
the autocorrelation is almost zero. Hence,
we may regard prices in the five year
period time scale to be independent and
identically distributed random variables.
Furthermore, if we consider five year
periods, we have lots of time to adjust the
harvest capacity when needed in order to
change the harvest level considerably. If
the periods are very short, on the other
hand, capacity constraints may make it
difficult or impossible to adapt harvesting
to price changes.

Note in particular that the very high price
level in the first period illustrated in
Figure 1. affects the mean and the
variance considerably if we chose to
include it in the data (C in Figure 2.).
Should we include it? We may argue that
the very high price was an effect of the
post war boom in the construction sector.
Then the question is: Is it likely that we
will have other post war booms in the
future? Should we include them in our
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Figure 3. Optimal reservation (net) prices
(net prices = price - harvest cost per cubic
metre). The reservation prices are
increasing functions of the price standard
deviation. The different curves represent
standard deviations of 25, 50 and 100
SEK. The investment cost is 10 000 SEK
and the rate of interest is 3%. The mean
net price is 200 SEK.

calculations? The question has no
obviously correct answer. In the rest of
this paper, we exclude the single
observation of a very high price.
However, we should be aware that if we
include it, the parameters of the estimated
price probability density function change
considerably and the optimal reservation
prices, the expected profitability and the
harvesting decisions over time are strongly
affected.

Some of the numerical assumptions used in
the analysis are the following:

® Volume per hectare, V(1) =
630.3744(1-6.3582"(-t/60))"2.8967,
where t denotes stand age. This volume
function is empirically motivated,
explained in higher detail and used in

Lohmander (1988b). It describes the
development of pinus Contorta on a
typical Swedish site.

® The reported numerical results found in
Figures 6, 7, 14, and 15 should be
relevant in cases where (i), (ii) and (iii)
hold:

(i) The true standard deviation of the
net price is close to 25% of the mean
net price (compare Figure 2).

(ii) The reforestration ( = investment)
cost per hectare is approximately 50
times higher than the mean net price per
cubic metre. (This is a reasonable
assumption in the light of the empirical
observations reported in Lohmander
(1994b)).

(iii) The real rate of interest is close to
3%.

Presented ideas and results of a more
qualitative nature should be relevant also
in cases where the presented numerical
assumptions do not hold. The absolute
magnitudes of effects may however differ
from the results reported in the Figures in
such cases.

Optimal reservation price strategy and a
typical forest harvesting problem

The optimal reservation prices, q, are
determined from the expected present
value, w, optimization problem.

q.
w, = rg.ax [ f wﬂﬁp)dp
e (1)
+ [e @V +L)fp)dp]
q,



Expected
present value

A
KSEK

16

T T T T ] = AGE
0 50 100 150 years,

Figure 4. Optimal expected present value per hectare at different stand ages if a harvest has
not yet taken place. In the deterministic case, the price standard deviation is zero, and the
present value is 5 727 SEK. The expected present values are increasing functions of the price
standard deviation. The different curves represent standard deviations of 25, 50 and 100

SEK. The other assumptions are the same as in Figure 3.

f(p) is the probability density function of
net price, p. L is the value of the land d%w, _ S . fig_

released after a harvest. (In this analysis, 5 qz aq:g dq, 3)
L is the present value of an infinite g

number of identical forest generations =0 >0
under certainty. Other possible ways t0
determine L exist.) The first order
optimum condition is given in ). 52
w .
™ fia) =~ TN <0
st = NGI L Wi q; (4)
84, @ >0 >0 >0
- e™gV@® + D] =0
In (2) we define g as g(.) = [...]. One can The first order optimum condition gives
easily show that the second order (5).
maximum condition is satisfied:
e ey~ B ®
; 1465)
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Figure 5. Harvest probabilities at different stand ages.

In('(S) we find the optimal reservation
price. In Figure 3, the time path of the
reservation price is presented. The
reservation prices and the expected present
values are calculated backwards from the
final period T. Note that the optimal
reservation prices are increasing functions
of the price standard deviation. It turns out
that the precise value of T does not affect
the obtained results in the early periods

“very much if T is sufficiently large. If T
represents a stand age of 200 years, we
have lots of options to harvest much
earlier. The probability that it is optimal to
wait until period T is almost zero
(compare Figure 5). In this model, we
assume that T represents the age of 200
years.

In Figure 4. we note that the expected
present value is an increasing function of
the price standard deviation and a
decreasing function of time. Observe that
in the Figures 3, 4 and 5 it is assumed that
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all decisions are based on the correct
information about the price mean and
variance. In this paper, the central
observation is that we do not know the
true mean and variance exactly. This will
affect the results shown in the mentioned
figures.

In a deterministic world, the optimal
rotation age is always 45 years in this
example. As the price standard- deviation
increases, the expected deviation from that
particular age increases, which is shown in
Figure 5. It is more important to adapt to
the rapidly changing market conditions
than to the slowly changing forest stand
density.

If the price standard deviation is zero (the
"deterministic case"), then the probability
is 1 that harvest takes place at the age of
45 years. As the price standard deviation
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Figure 6. Expected present value ratios (*) for different estimation errors: True values. (*)
= The expected present value of the forest with adaptive decisions divided by the present

value of an optimal deterministic program.

increases, the probability of that particular
harvest age decreases. The standard
deviation of the harvest year increases.
The different curves represent the price
standard deviations 25, 50 and 100 SEK.
The other assumptions are the same as in
Figure 3. '

Known mean and variance errors:
Expected objective function values

Now, assume that we make errors (which
we always do with a limited number of
observations) when we estimate the price
mean and variance. The wrong price
distribution parameters are used when we
determine the reservation prices. Hence,
we sometimes make decisions that are not
optimal. What is the expected present
value of a plantation if we consider this
and assume that we know the estimation
errors? The answers are found in Figure 6.

Note in Figure 6. that if the ratio is

greater than 1, the adaptive approach is
better than the deterministic approach. It is
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possible to make rather large €rrors in the
mean and variance estimations and still get
a better economic result with adaptive
decision making than if a deterministic
model is used. It is important to observe
that if one of the parameters is
overestimated and the other is
underestimated, the decisions and the
economic result may be almost the same as
if the correct values were known.

If both parameters are strongly
overerstimated however, the reservation
prices will be much too high and the
economic result is worse than if the
deterministic method is used. Results of
the kind found in Figure 6 were used to
estimate a two dimensional third order
polynomial with ordinary regression
analysis. All estimated coefficients were
found to be strongly signifficant. The
polynomial approximation is found in
Figure 7, evaluated in a number of points
corresponding to the coordinates shown in

Figure 6.
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In‘equation (6), the approximating
polynomial illustrated in Figures 7. and 8.
is given. X = (k-1) where k = (estimated
mean)/(true mean). Y = (z-1) where z =
(estimated standard deviation)/(true
standard deviation).

The polynomial is derived from 110
"observations" of the expected present
value. The following combinations of k
and z are used: k takes the values 0.5,
0.6, ...,1.5 and z takes the values 0.2,
0.3, ..., 2.0. The R2 value of the
regression was 0.973. All coefficients
found in (6) were signifficantly different
from O at the 99% probability level.

W, = 1.54 - 4.90%" - 1.86XY - .210YY
- .205YYY - 4.75XXX - .380XYY (6)

A three dimensional graph of the approx-
imating polynomial is found in Figure 8.
Obviously, it is dangerous to strongly
overestimate the mean and the standard
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deviation simultaneously.

The price mean and standard deviation
erTorsS

We should be aware that we do not know
which mean and variance estimation errors
we make. According to Fisher (1925) (see
also for instance Rudemo (1979) and
Grimmett and Stirzaker (1985)), the mean
and the variance errors are independent.
Furthermore, the mean error is normally
distributed and the variance error is
Chi-square distributed. The two
dimensional probability density function of
the mean error and variance is found in
Figures 9 and 10. The mentioned Figures
differ since the numbers of observations
differ. In Figure 9, 4 observations are used
and in Figure 10, 21 observations are
used. Note in particular that, when the
number of observations is low, the
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Figure 10. The mean error and variance probability density function based on 21
observations.
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Figure 11. Optimal adjustment in the one dimensional case. F = expected present value as a
function of the estimate of the mean. d1 = expected value of F when the estimate of the
mean is too low (=a) in 50% of the cases and too high (=b) in the other 50% of the cases.
G corresponds to d1. G is however a function of the estimate adjustment level. With optimal

adjustment, G takes the value el.
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Figure 14. The optimal adjustment of the estimated mean as a function of the number of
observations (= solid line). The dotted line is an approximation: - EXP (1.477214 - 0.09147

N), where N denotes number of observations.

variance estimation error probability
density function is strongly assymetrical.

The optimal adjustment of the unbiased
estimate

Let us first discuss the principles of
optimal parameter adjustment in the one
dimensional case. Assume initially that the
expected value of our estimate is correct
(the estimate is free from bias), but that
we always make an error. The estimation
error is negative in 50% of the cases and
positive in the other cases. In every case,
the absolute error is the same. The
objective function, the expected present
value, is an assymetric function of the
error. A positive error makes the objective
function decrease more than a negative
error of the same absolute value. Then, it
should be clear from Figure 11, that it is
optimal to negatively adjust the estimated
(bias free) parameter value. The optimal

adjustment level is also found in the graph.
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In the problem of this paper, we have two
possible errors and adjustment options (the
price mean and variance). However, which
is obvious from Figure 8, we can by
adjustments in one dimension reach a high
objective function value even if there are
errors in the other dimension. Possibly, we
should get even better results by
adjustments in both dimensions. From the
Le Chatellier principle (compare
Henderson and Quandt (1980 p. 82), we
know that a constrained optimum can not
be better than a free optimum. -

In this case, if we restrict ourselves to a
constrained adjustment (zero) in one
dimension, this can not be better than if
we could make optimal adjustments in both
dimensions. However, Figure 8. indicates
that adjustments in one dimension could
improve the solution considerably. In this
paper, from now on, we restrict the
attention to one dimensional adjustments.
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Figure 15. The objective function ratio (= The expected present value of the forest with
adaptive decisions divided by the present value of an optimal deterministic program) with
optimal adjustment as a function of the number of observations ( = solid line). The dotted
line is an approximation: 1.54204 - EXP ( -1.09764 -0.12442 N ), where N denotes number
of observations.

Determination of the optimal adjustment second order derivatives of the objective
function are approximated numerically and

It is obvious that, since the expected the Newton-Raphson method is used to
absolute estimation errors are decreasing find the value of "a" which makes the first
functions of the number of observations, order derivative of (7) with respect to"a"
the optimal absolute adjustments must be equal to zero. The results are found in
decreasing functions of the number of Figure 14. There, you also find an
observations. Figure 14. shows that this is exponential function which approximates
the case. The problem is to optimize the the different results and gives the optimal
expected present value of the forest (w correction as an explicit function of the
with time index 0) as a function of the number of observations.

adjustment level, a, (of the estimated

mean) for each possible number of Determination of the expected present
observations. value

Now, the question is which expected

A% W, = f f wo((m+a),s) h(m,s) dm ds present value we get when we use the

# ) optimized adjustment. This is shown in

Figure 15.

h(m,s) is the joint probability density Clearly, it is important to have many
function of the mean, m, and of the observations as long as we consider them
standard deviation, s, estimates. The relevant in the estimation of the future
problem of finding the optimal adjustment, price probability density function. The

a, is solved numerically. The first and expected present value is strongly
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improved if the number of price
observations increases.

DISCUSSION'

In this paper, the problems of market
adaptive harvesting associated with the fact
that we have low numbers of relevant
historical price observations, have been
analyzed. It was found that it is optimal to
negatively adjust the bias free estimate of
the mean when the reservation prices are
determined. Of course, the decisions will
be better if more observations are
available. The sensitivity of the objective
function (with optimal adjustment) to the
number of observations was determined.

The author is convinced that the problem
discussed in this paper is typical to most
real world problems. Note that in most
real world problems:

- The future state of the world is not
known with certainty.

- Several decisions may be taken over
time.

- Early decisions affect later options.

- The amount of relevant historical data is
limited.

Hence, the author knows that the method
of optimal adjustment in adaptive problems
suggested in this paper will find many
applications also in very different areas of
decision making. Hopefully, different
future general developments and
applications will give new valuable
insights.
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