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THE OPTIMAL DYNAMIC PRODUCTION AND
STOCK LEVELS UNDER THE INFLUENCE OF
STOCHASTIC DEMAND AND PRODUCTION
COST FUNCTIONS:

Theory and Application to the Pulp Industry Enterprise

PETER LOHMANDER

Swedish University of Agricultural Sciences, Dept. of Forest Economics,
S-901 83 Umea, Sweden

It is tempting to analyze production and stock level problems with deterministic and other simple
assumptions. Several versions of simple and partial optimal inventory formulae are available in the
literature. However, these formulae seldom give the optimal answer to the relevant problem. A
critical discussion of economic predictions is included. The optimal dynamic production and stock
levels are determined under the influence of stochastic demand and production cost functions. The
sensitivity of the optimal solution to the parameters is derived. A forest industry example is
constructed and discussed. The approach used is stochastic dynamic programming in Markov chains
with an infinite horizon where the relevant large dimension linear programming problem is solved via
policy iteration. The solution converges to the global optimum in a finite number of iterations and the
necessary size of the computer memory is approximately N times smaller than if the simplex method
would have been used (where N=2+*K=*K, K=number of feasible decisions per state). An
optimization program for the personal computer is constructed and included in the numerical

appendix.

KEY WORDS Dynamic production, pulp industry, stock level, stochastic dynamic programming
problem, forest industry.

1. INTRODUCTION

1.1. The Questions and the Content

How much should we produce today when we may store one part (for future
sales) and sell one part (of the production and the entering stock)?

This general question will be asked in this paper under the assumptions of
stochastic demand and production cost functions. Empirical data relevant to a
pulp producing enterprise active in the international pulp and Swedish pulp wood
markets will be presented and discussed. A pulp producing enterprise will be
defined and the optimal market dependent dynamic production, stock level and
sales decisions will be determined.

1.2. Predictions in Economics—A Discussion of Recent Contributions

One of the more important questions is if there are any theoretical reasons why
we should not use traditional deterministic inventory formulae. One may argue
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104 P. LOHMANDER

that there are reasons for every event that takes place. If we know how things
affect each other and know the initial state of the world. then we should be able
to predict the future. Unfortunately, and for many reasons fortunately, this is not
possible. One simple reason is that we do not know much enough about the
present state of the world. Complete information would be too expensive and for
many reasons not possible to obtain. The other reason is that many systems give
deterministic chaos. Even in very simple nonlinear determinisitc systems, it has
been shown that the future state can not be predicted. We should not expect to
be able to predict the business cycles or the prices of specific products very well in
the real world since the economic system is not only nonlinear but also very
complex. The interested reader is suggested to read Puu (1991), chapter 4, where
these issues are discussed in detail.

Brannds and De Gooijer (1991) introduce autoregressive assymetric moving
average models in the modelling of business cycle data. In the introduction they
discuss results reported in the the business cycle literature. They write that some
authors have and some have not found evidence of chaos and/or nonlinearity in
tested GNP series. :

In oligopolistic and oligopsonistic markets, there are often game theoretic
reasons why firms take decisions that can not be perfectly predicted by the
competitors. We may say that the firms introduce quasi-random behavior
because they find it profitable. von Stackelberg (1934) and (1938) was the pioneer
in this field. A recent contribution to the theory and application is found in
Lohmander (1991).

We should be aware that most dynamical systems in the literature that have
been shown to give chaotic solutions, have parameters that are fixed over time.
This may give the impression that all variables in chaotic systems stay within some
known intervals for ever and that a probability density function can be estimated
during some time interval and used in later time intervals. This is not necessarily
true in real world systems since the parameters can be expected to vary over
time in ways that are not necessarily predictable. Hence, it is not obvious how
and if we could detect chaotic behaviour in real world time series. Maybe we will
never be sure if a time series is generated by a deterministic chaotic system or
really is “‘truely” stochastic (if such phenomena can exist).

Lofgren, Ranneby and Sjostedt (1989) investigate the business cycle forecasting
problem. They write that business cycles have been defined as the:—
*“. .. recurrent fluctuations of output about trend and the co-movements among
other aggregate time series.” They quote Burns and Mitchell (1946) who
write:—". . . in duration business cycles vary from more than one year to ten or
twelve years; they are not divisible into shorter cycles of similar character with
amplitudes approximating their own.” Lofgren, Ranneby and Sjdstedt suggest a
forecasting method which they claim should work well when the time series are
stationary. They write that trends and seasonal variation in time series must be
taken away before the methods can be used. Different methods are discussed to
handle this problem. Finally they select to decompose the original time series into
two components. One series contains trend and seasonal variation and the other
series contains the deviation from the first series, something which may be
regarded as a stationary time series. The series containing trend and seasonal
variation is estimated as a polynomial with dummy variables for the different
s€asons.
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One problem with the approach of Lofgren, Ranneby and Sjostedt, and of
course with most forecasting models, is that we do not know if the trend that we
think that we can isolate from the original time series really is a trend that tells us
something about the future. Maybe the series simply is a nonstationary
Martingale. Note that even the time path of a Martingale, a stochastic process
with statistically independent increments with expected value zero in every time
period, gives time segments where we could easily find “trends”. These “trends”
are however completely random (they could not be predicted before the
increments were revealed) and tell us nothing about the future behaviour of the
time path. (Lofgren, Ranneby and Sjostedt carefully write that their method
presupposes that the regression model is correct. Most likely, one should here
include the assumption of the predictable trend.)

It has always been tempting to predict the future state of the world. This has
never been easy. Two recent examples from the Swedish forest sector will be
mentioned here. In 1988, Wibe (1988) predicts (translations from Swedish by the
author):

—*Until the year 2000, the demand for pulp is expected to increase about 2%
annually, while the growth in sawn wood demand stays at about 0.5%.”

—The expected increase in demand (about 2% annually) is of approximately
the same magnitude as the expected increase in supply (in the raw materials
market). Thus, there is no reason to expect a general shortage of round
wood (with increasing prices) or an excess supply (with falling prices). The
likely development is that these two (demand and supply) will be balanced in
the time period under consideration (until the year 2000).”

—*“At least until the end of the century, we can make the certain prediction
that our competitive power is not seriously threatened.”
“The forecasts are maybe not extremely good but they are not particularly
dark either. There are threats, but no threats that mean that we should
make sudden and drastic changes in the course.”

The reader should observe that these predictions were not made very long ago.
The reader may also compare the predictions with the present state of the
Swedish and the international economies. The Swedish forest industry has this
year already had to close down several pulp mills and the severe economic
conditions in the forest industry are under debate in the press every day.

Lonnstedt (1991) made his predictions even more recently, namely January 21,
1991. He writes (translations from Swedish by the author):

—*“I] am convinced that we will soon experience a new raise for the Swedish
forest sector. However, 1 had better make a reservation concerning the time
it takes before the business cycle turns.”

—“To me, the development of the Swedish forest industry looks bright (even
if there may be a certain pause).”

—"“The forest sector and in particular forestry lives with a high degree of
uncertainty .

Note that these predictions are rather ambiguous. As long as you do not say
when things will become better, it is impossible to say that your prediction was
wrong. On the other hand, it is possible that, some time in the future, things will
become better. Then, you know that vou made a correct prediction!
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Of course, people who make positive predictions can afterwards say:

—My predictions were correct (if they happened to be correct) and you should
believe in my predictions also in the future.

—I made my best to give a positive perspective and courage to the decision
makers in the markets. That is why I made a very positive prediction.
Unfortunately, this was not enough. (If they happened to be wrong.)

Most people dislike a person who makes a negative prediction. Thus, we
should often expect predictions (in particular predictions without strong theoreti-
cal and empirical documentation) to be biased towards the positive side.

In this paper, the general market hypothesis made is that the prices of the pulp
and the pulp wood are determined by two different quantity dependent functions.
These functions contain stochastic components that can not be predicted in any
other way than in the sense that the probability distribution i1s known.

1.3. The Inventory Level in the Forest Industry

Bergman and Lofgren (1989) aim at investigating whether inventory policy is
mainly a means to handle uncertain supply, without dealing explicitly with the
complications created by the determination of an optimal inventory policy. They
statistically find support for the idea that the Swedish forest industry increases the
inventory when the round wood supply in the domestic market is greater than
expected and vice versa. Bergman and Lofgren write that a partial adjustment
process is not inconsistent with their empirical findings. They claim that a partial
adjustment mechanism would be the most “economic™ way to restore the optimal
inventory level.

Here, we should note that Bergman and Lofgren assume the existence of an
optimal inventory level. In this paper, a stochastic dynamic optimization model
will be developed. It will be shown that the optimal inventory level in a model
enterprise is highly market dependent. The price levels in the pulp wood market
and in the pulp market together with the entering stock level from the previous
period determine the optimal level of the stock until the next period.

1.4. Multi Stage Adaptive Decisions

If we agree that the future can not be perfectly predicted, we should not neglect
the temporal structure of decisions in real world problems. Later decisions can
and should be based on later information than the earlier decisions. The initial
decisions should take the economically valuable future level of flexibility into
consideration. In the last years. the stochastic and adaptive decision theory with
applications to resource management has exploded. Adaptive economic theory is
not a strange and restrictive branch of only theoretical interest. Adaptive
economic theory is a more general theory than the traditional deterministic
theory. It has strong implications to practical economic decisions. It should, if
possible, be used in the planning of all economic decisions that have effects on
the future state of the world. In the reference list, several examples by
Lohmander and by Gong from the forest sector are included. In the analysis in
this paper, the adaptive approach will be used.
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1.5. Assumptions, Consequences and Aspects on Implementation

In the early university courses of business and management. most students learn
how to calculate the optimal reorder quantity and the optimal average inventory
level under specific deterministic assumptions. Most management books, for
instance Sasieni, Yaspan and Friedman (1965), Ackoff and Sasieni (1968),
Wagner (1975), Ullman (1976) and Baumol (1977), contain such sections.

In some courses, the students learn to derive the formulae via the first order
optimization conditions. This is of course a valuable exercise in calculus and
optimization. However, in real world problems, the assumptions made in the
inventory calculations of the course are seldom relevant.

In several publications including many of the mentioned course books, much
more general inventory models are suggested and discussed. Wagner (1975)
combines the general theory of stochastic dynamic programming in Markov
chains with probabilistic inventory models in an excellent way. Unfortunately,
many students of management never have the time and/or the capacity to
discover the richness of this field and the fundamental importance to economic
inventory decisions. When they leave the university and become directors of real
enterprises, more problems appear:

—It is very difficult to communicate the principles of stochastic dynamic
programming in Markov chains within the typical enterprise.

In this situation, there are three options open to the new director in case he
knows about the advanced and often highly relevant methods:

—He may introduce the methods and (re)educate the personnel. This may
however be very expensive and time consuming.

—He may introduce the methods and control the inventory decisions per-
sonally. This may occupy his personal time and thus be costly in several
ways.

—He may introduce, or stay with some already existing, simple decision rules
concerning inventory and production. These rules, and the economic
principles behind them, may easily be communicated within most en-
terprises. However, it is likely that the rules will often suggest production
and inventory decisions that are not optimal. The rules are based on a simple
and partly irrelevant description of the true problem.

The value of some simple rules may be that they create a *“‘robust enterprise”.
Everyone understands the simple rules and no strange errors in some calculations
make the enterprise system break down.

Nevertheless, the simple rules may suggest decisions that are completely wrong
(or completely correct in some situations but because of the wrong reasons!). In
this paper, we will investigate the sensitivity of the optimal production and stock
level decisions to some parameter changes. In several inventory models, these
parameters are not at all found!

Since the optimal decisions in the “more general” model of this paper are
strongly affected by these parameter changes. it is clear that the simple models
will suggest decisions that frequently are far from optimal in a world where these
changes often take place.



108 P. LOHMANDER

PULP WOOD PRICE PULP PRICE
/ 'Y
350 — L 2200
340 - - 2100
330 - L 2000
320 - L 1900
310 - . , % — 1800
300 — ‘k\ o L 1700
rd
290 4 / N - 1600
280 - — 1500
—F T T T T T ° T 71 = TIME
1980 81 82 83 84 85 86 87 88 89 90 year

Figure 1 The pulp wood price (solid line) and the pulp price (dotted line) series in Sweden. Pulp
price = Export price (from Sweden) of unbleached sulphite pulp. SEK per ton, dry weight. Pulp wood
price = Price index for all pulp wood in Sweden where the harvest season 1967/68 is given the value
100. Both price series are represented as yearly averages and multiplied by the series
EXP(—s+*(YEAR —1980)) in order to take away the trend (partly because of inflation). s = 8%.
Source: Statistical Ycarbook of Forestry, 1991.

1.6. The Empirical Reality of the Pulp Industry

Now, let us look at a fraction of the empirical reality of the enterprises in the
forest sector. Figure 1 shows that the pulp wood price and the pulp price have
varied considerably over time during the last 10 years. Note that the correlation is
strongly positive in the period 1981 to 1984. In the rest of the time interval, the
picture is completely different. The 1991 observation is not yet available but it is
already well known that this year is one of the worst in modern time with
respect to profitability in most sectors of the economy.

Figure 2 contains a plot of the pulp price and the pulp wood price. Again, we
may observe that the time period 1981 to 1984 is a period of positive correlation.
The complete period, however, seems much more random. The correlation of the
pulp price and the pulp wood price is surprisingly low. The data series plotted in
Figure 2 give the correlation coefficient 4%

The stock in the forest industry of pulp wood and chips has varied very much
and very rapidly during the last 20 years. Figure 3 tells us that the stock
represented the consumption of approximately 8 months in 1971. In 1990, the
stock was almost the same as the consumption of 2 months. Even if the vearly
variation is high, it is obvious that the general trend is negative: The general
stock/consumption ratio has decreased very much during the last two decades.

The value of the stock of the output, the pulp, is found in Figure 4. Estimated
values can be expected to vary in the statistics for several reasons, one is the price
level and one is the physical quantity level. Hence, the level of precision with
respect to the physical stock level is not as high in Figure 4 as in Figure 3.
Approximative calculations show that the ratio “(pulp stock)/(pulp sales)”
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Figure 2 Combinations of pulp price and pulp wood price different years. The definitions and the
source are the same as in Figure 1.
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Figure 3 The Swedish stock of pulp wood and chips in the end of the years (solid line) and the
industrial consumption of wood raw-material in the Swedish pulp and paper industry (dotted line).
Source: Statistical Yearbook of Forestry, 1991 (and earlier years).
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Figure 4 The value of the stock of pulp in the end of the years in the Swedish pulp industry. The
values are calculated according to the price level in the middle of 1980. Source : Statistics Sweden,
Statistical Reports, Stocks Industry, SNI 34111,

generally has been much lower than the ratio “‘stock/consumption” discussed
with respect to pulp wood and chips. The “main stock”, defined in this “time
sense’’, has been raw materials in the discussed period. Other definitions, such as
stock values in officially available statistics, may give other relations. It is quite
possible that the value of the stock of the pulp is higher than the value of the
stock of the raw material in the vearly reports. Note that the value of the raw
material stock can be calculated many different ways and tax considerations may
make it profitable for the individual firm to deviate from the “correct™ values.

2. THE OPTIMAL ACTIVITIES OVER TIME IN A PULP PRODUCING
ENTERPRISE

In this section, we will define a pulp producing enterprise and describe the
dynamic economic production, stock level and sales problem. Finally. the optimal
production, stock level and sales decisions will be calculated. The price series
presented above serve as the empirical background and motivation. Numerical
assumptions are made concerning conditions that are usually not the same in
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different enterprises. Every assumption is described in full detail in the graphs
and/or in the numerical appendix.

The problem is defined as an infinite horizon finite state stochastic Markov
chain problem. The resulting linear programming problem is solved via the policy
iteration method discussed in Wagner (1975), chapter 12. A problem specific
optimization code for the personal computer has been constructed and included
in the numerical appendix. In the main text, all results essential to the qualitative
discussion are presented in the form of graphs.

2.1. General Assumptions Concerning the Pulp Enterprise

—The objective of all activities including production, storage and sales, is to
maximize the total expected present value.

—The time horizon is infinite.

—The demand quantity in a particular time period is not fixed and exogenous:
More generally, the price of the quantity sold in a particular time period to
the consumers is a function of the sold quantity, which is endogenous, and a
stochastic price function parameter. Compare Figure 7.

—The production cost in a particular period is a function of the production
volume and a stochastic production cost parameter. Compare Figure 8.

PULP PRICE

A

INTENSIVE
INVENTORY
MANAGEMENT

= PULP WOOD PRICE
PRODUCEl  SELL
AND STORE POLICY

PULP PRICE

A
\ NO
INVENTORY

= PULP WOOD PRICE
PRODUCE | NO

AND SELL ACTIVITY POLICY

Figure 5 A simple hypothesis concerning the optimal production and inventory policy under
different kinds of parameter correlation. Positive (upper graph) and negative (lower graph)
correlation between the pulp price and the pulp wood price are shown in the graphs together with the
corresponding policy effects.
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Figure 6 A possible and numerically practical two dimensional probability distribution of the pulp
price and the pulp wood price. Compare the empirical background shown in Figure 2. The number of
observations in Figure 2. is very low and it is difficult to reject the suggested probability distribution
on statistical grounds. The distribution is suggested since we need an explicitly defined probability
distribution in order to solve the optimization problem. There are 9 possible outcomes. The outcome
(2,2) is given the probability 36% and all other outcomes are given the probabilities 8%.
(36% + 8+ 8% = 1(0%). Note that the price levels associated with the different states in the graph
have not vet been decided, just the functional form,

—The level of the quantity possibly stored between periods is restricted from
above and, of course, from below. The storage cost is a function of the
storage volume.

—Most importantly, the two stochastic variables, the price function parameter
and the production cost parameter, are given a two dimensional probability
distribution. The correlation of these variables is of central importance to the
derived optimal policy. Compare the Figures 2, 5 and 6.

2.2. A Mathematical Formulation of the Markov Decision Problem

The optimization problem can be stated in the following way: We want to
maximize the expected present value of the sum of all present and future profits.
For each initial state (for each combination of the entering stock level, the cost
function state and the price function state), we want to select the optimal
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Figure 7 The stochastic pulp price function used in the optimization model. The pulp price is a linear

function of the sales volume 1n the same time period. Stochastic shifts in demand are introduced via

vertical shifts in the price function. The user determined price parameters are:

PRICEA = the price level when the sales volume is zero and the price level state takes the medium
value (=2).

PRICEB = the derivative of price with respect to the sales volume in the same period.

PRICEC = level of change in the price function when the price function state increases or decreases
one step.

STOCHASTIC
PRODUCTION COST STATE
COST
3
A
2
.
COST A
04 » PRODUCTION
0 LEVEL

Figure 8 The stochastic production cost function used in the optimization model. The user
determined cost parameters are:

COSTA = the set up cost (the production dependent fix cost per period).

COSTB = the marginal product cost when the cost function state takes the medium value (=2).

COSTC = level of change in the marginal cost function when the cost function state increases or
decreases one step.

STOC = marginal cost of storing one unit of the stock from one period to the following period.

FIXC = the production independent fix cost per period.
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decision. One important assumption is that optimal decisions will be taken also
in the future time periods, conditional on the future states (states that will be
known when that decisions are taken). Another assumption is the existence of a
stationary optimal policy: The optimal state dependent decisions are the same in
every time period.

This should be the case if the planning horizon is infinite because the decision
problem is exactly the same in every time period. On the other hand, when the
planning horizon is finite, the optimal decisions may be different in the first and
the last period in many stock and extraction problems. In the last period, there is
no reason to think about future periods. There is no reason to save stocks that
may be used later. In the earlier periods, on the other hand. the optimal stock
that should be left for the future frequently is strictly positive. A stationary policy
thus seems reasonable in the infinite horizon problem of this paper if the state
description used in the model really approximates the relevant state space in a
sufficiently good way.

If important exogenous conditions, not described through the state space in the
model, change over time, it is not unlikely that the “model state dependent”
decisions should also change over time. We will assume that the state description
of the model really represents the relevant state space. We assume the existence
of a stationary optimal policy.

Let Y(i) denote the expected present value if the initial state is i. There are [
possible states. For each state, i, there are K different possible decisions. A
particular decision is denoted by k. If you make decision k when you are in state
i, you will get the instant economic profit (revenues—costs) or loss c(i, k). The
decision will influence the probability distribution of the entering state in the next
period. If the entering state is i and you take decision k, then the probability that
the entering state in the next period is j is denoted by 7'(i, j, k). Now. it should be
clear that Y (i) can be calculated from:

Y(@i)= mgx(c(i, k) +exp(—r)* >, (T(i, j, k)* Y(j))) for every i (1)
R I

The rate of interest, which must be strictly positive. is 7. We must make sure that
this equation simultaneously holds for every state i and expected present value
Y(i).

2.3. The Linear Programming Approach and the Simplex Method

One way to solve this problem is to use linear programming. You minimize (note
that maximization is not used!) the sum of the [ values Y (i) with strictly positive,
but otherwise arbitrary, weights. For each state i there are K restrictions from
below. Every possible decision k gives a restriction on the lowest possible value of
Y(i).

Y(i) = c(i, k) + exp(—r)= 2 (T(, j, k) * Y(j)) for every i. k (2)

Since the problem is to minimize the positively weighted sum of the values, the
restrictions of the decisions which give the highest values Y (i) will be efficient in
the optimal solution. The dual variables of that restrictions, the shadow prices,
will be positive (strictly positive if the optimum is unique). Note that the number
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of restrictions becomes I*K. This often becomes a very large number in
“realistic”’ models. In the numerical model of this paper, there are 5 stock levels,
3 price function states and 3 cost function states. Hence, ] = 5% 3 %3 =45,

The number of possible decisions in each state, K, is 18 since there are 3 levels
of production and 6 levels of sales. For very low levels of the entering stock, the
number of possible decisions is lower than 18. The reason is that you can not sell
more than the sum of the entering stock and the present production. Further-
more, for every high levels of the entering stock, the number of possible decisions
is lower than 18, since the maximum stock level is restricted. Hence, the number
of restrictions is a little lower than 45 * 18 = 810. For simplicity, we assume that
the number of restrictions is 700. Note that the size of the simplex matrix
becomes considerable even in this rough model.

We assume that we use the simplex algorithm with the Big-M method in order
to handle the = constraints. The number of rows is 701 since there are 700
restrictions and 1 objective function.

The number of columns is 45+ 2+700 4+ 1 = 1446 since each Y(i) must have
one column and each restriction must include one column for the surplus variable
and one column for the artificial variable. Finally, the right hand side of the
restrictions needs one column. The total number of elements in the matrix
becomes 701=1446=1013646. In order to avoid severe errors in the calcula-
tions, we must use a double precision matrix. The reader realizes that not even
this rough problem can be solved in a typical personal computer. Furthermore,
the number of elements in the matrix is approximately a quadratic function of the
resolution in each dimension. For instance, if the number of possible production
levels increases from 3 to 6, then the number of elements in the matrix is
approximately 4 000 000.

If the number of possible production levels is 6 and the number of possible
sales levels is 12, then the number of elements is approximately 16 000 000. (A
normal personal computer can today handle one simplex matrix in double
precision with approximately 20000 elements.) Simplex calculations of the
suggested dignity will not only need a very large internal memory capacity of the
computer but also often imply that numerical errors become large and that the
computation takes a long time.

2.4. The Policy Iteration Approach

Is there a way to avoid the enormous size of the internal computer memory
required by the simplex method? Yes, policy iteration is a very tempting
approach in this case. The method can be described the following way:

The constraints are exactly those discussed above. However, the method to find
the efficient constraints. in other words the optimal decisions, is different.
Clearly, we need one decision for each state i. In the above problem, we have to
determine 45 values Y(i) via 45 efficient constraints (equations). In other words,
we have to find the correct linear equation system with 45 variables and 45
equations. This means that we do not have to use a very large size internal
computer memory even if we use a double precision matrix. We do, however,
often have to solve many such linear equation systems. One can show that the
solution monotonically converges to the optimal solution in a finite number of
iterations since there is only a finite number of possible equation systems and we
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always change equations in the system in such a way that all values Y (i) increase
nonstrictly and at least one value Y(i) increases strictly.

The method can be presented the following way: Guess what 45 decisions are
optimal in the 45 different states. Solve the corresponding equation system. The
solution is the first guess of the values Y(i). Assume that the values
Y(2), Y(3), ..., Y(45), of the first guess are optimal. Check all of the 18 possible
decisions and corresponding value restrictions for state 1. One of these decisions
maximizes Y(1) conditional on the other values in the vector Y. We may here
denote this new conditional value of Y(1) by ¥,..(1).

Note that if this decision is selected to replace the original decision, every Y (i)
increases or is unchanged. This is obvious from the restrictions since all
probabilities and discount factors are nonstrictly positive. Hence, if the new
decision is selected instead of the old guess, then the objective function of the
linear programming problem where every value Y(i) has a positive weight
increases. Note that ¥, (1) denotes the expected present value in case the initial
state is 1, the new decision is selected for the first time period and the old strategy
guess is used in every future time period. In the same way, we may calculate
Ynew(z)s Ynew('?’)! gy Yntw{45)'

These values are of course calculated conditional on the initial guesses
concerning the other 44 decisions. Now, we want to make a new qualified guess
concerning the decisions and equation system that give the optimal values Y(i).
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Figure 9 The optimal production and sales decisions as functions of the price function state. the
production cost function state and the entering stock level, ES. The price function state and cost
function state probabilities are those presented in Figure 6. Parameters: The real rate of
interest = 3%, FIXC =0, STOC = 1. (COSTA, COSTB, COSTC) = (1, 10. 2). (PRICEA, PRICEB,
PRICEC) = (14, -0.2, 3).
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Select to replace one of the equations of the original system, namely the equation
of the state (row) which maximizes the difference Y,.. (i) — Y (i), where Y(i)
denotes the old solution. In this row, i, introduce the “partially” best decision
according to the rules above. Solve the new equation system and continue the
same way until it is not possible to improve the solutions anymore. Then, the
optimum is found.

3. OPTIMAL PRODUCTION, STOCK LEVEL AND SALES DECISIONS
IN DIFFERENT MARKET STATES

The Figures 9-12 show how sensitive the optimal production, stock level and
sales decisions are to the parameters. We make the observation that the optimal
stock change (production-sales) is a nonstrictly decreasing function of the
entering stock level. This observation is consistent with the partial stock
adjustment process suggested by Bergman and Lofgren (1989). We also find,
however, that the optimal production and sales decisions are highly market
dependent. The ‘“optimal stock level” must be calculated as a function of the
states also in the two stochastic markets. Maybe, the “optimal inventory level”
suggested by Bergman and Lofgren (1989) could be interpreted and defined as
the expected optimal stock level. With that definition, the results presented here
suggest an expected stock adjustment towards that level. The time path of the
optimal stock will of course be stochastic.

1 1 1 2 2 2 3 3 3 PRICE PARAMETER
1 2 3 1 2 ] 3 COST PARAMETER
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Figure 10 The optimal production and sales decisions as functions of the price function state, the
production cost function state and the real rate of interest. The entering stock is 4 units. The
parameters are the same as in Figure 9 except for that the rate of interest varies in this graph.
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Figure 11 The optimal sales level as a function of the entering stock level and the storage cost level.
The price function state = 1, the production cost function state = 1. The parameters are the same as in
Figure 9 except for that the storage cost level varies in this graph.

OSs 0s
A A
4 ,f\C=1.C=2 4
7. ﬂ"-i—f’;‘:‘ o 19
24 ! 18
14 1
0 0-
—T 717177 T ™ ES
01234
r=1%
Qs Qs
A A
4 P &
N C=1,C=2 B
3 A 3
2 / C-3 2
14 J 14
0 H 04
1T ES
01234
r=5%

=TT r—=ES

01234
r=7%

Figure 12 The optimal stock level, OS, until the next period as a function of the entering stock level.
ES, the real rate of interest and the cost function state. The price function state = 1. The parameters
are the same as in Figure 9 except for that the rate of interest varies in this graph. C denotes cost

funcrion state.
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The optimal stock level decreases nonstrictly with the rate of interest and the
storage cost level. These results are consistent with the corresponding results in
most partial and simple inventory models. In the graphs, it is clear that the
illustrated changes in the two stochastic markets generally affect the optimal
decisions more than the illustrated changes in the rate of interest and the storage
cost.

We must have detailed information about the specific economic conditions in
the specific enterprise in order to be able to say if typical variations in the markets
or typical variations in the rate of interest and the storage cost mean more to the
optimal changes in the stock level. In the illustrated enterprise example, however,
market changes are more critical to the optimal stock level decisions than changes
in the other parameters under discussion.

4. OPTIMAL STOCHASTIC MARKOV CHAIN NETWORKS AND
STOCK STATE PROBABILITIES: PARAMETER DEPENDENCE
AND SENSITIVITY ANALYSIS

Now, when we know the optimal production and sales decisions for every
possible state of the entering stock, the stochastic parameters of the price
function and of the cost function, we also know the optimal level of the stock
after sales for every state. Since we know the probabilities of the different price
function state and cost function state combinations. we know the probability that
it is optimal to move from one stock level to another. This is shown in Figure 13.

The arcs in Figure 13 show transitions that are optimal with strictly positive
probabilities. The probabilities are shown for each transition. Note that the
graphs do not reveal everything about the production and sales activities. As an
example: The stock transition graphs are identical for the cases STANDARD and
SETUPC = 0 but the production and sales decisions are not. The production and
sales levels are more sensitive to the states of the markets if the set up cost is
reduced. In Figure 13, we sometimes find that the probability of moving from
some state, §, to some other states are strictly positive and the probability of
moving to some state, S, from other states is zero. Then, it is clear that the
probability that the stock level is in state S approaches zero as time approaches
infinity. As one example, we may investigate the case “STANDARD™ in Figure
13. If the initial state is 5, then the stock has a lower level than the initial state
with probability 1 in the next period. The stock level may take the value 2 or
some other values. If we go to state 2, the probability is strictly positive that we
go to other states in the following period. The probability of going to state 2 from
some other state is zero for all other states than 5. Hence, as time approaches
infinity, the probability that the stock level is in one of the states 2 or §
approaches zero.

Grimmett and Stirzaker (1985), chapter 6, discuss the qualitative properties
and conceptually important definitions of Markov chains and states. In particular,
a state is called persistent (or recurrent) if the probability of returning to it,
having started from it, is 1. If this probability is strictly less than 1, the state is
transient. Quite clearly, the states 2 and 5 in the case “STANDARD” are
transient. Grimmett and Stirzaker also write that state i communicates with state
j if the state may ever visit state j with positive probability, starting from i. State
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"STOC:=0" ‘ "SETUPC =0"

Figure 13 The stock state network in four different cases. The stock states 1, 2, 3, 4 and 5

correspond to the pulp wood consumption levels of (0, 6, 12, 18 and 24 month production at full
capacity utilization.

CASE DEFINITION

STANDARD Parameter assumptions according to Figure 9.

r=1% As STANDARD except for that the real rate of interest = 1%.
STOC=0 As STANDARD except for that the storage cost = 0.

SETUPC =0 As STANDARD, but the set up cost= COSTA =0.

i and state j intercommunicate if i communicates with j and j communicates with i.
In the case “STANDARD” we find that all states communicate with the states 1,
3 and 4. Furthermore, these states intercommunicate with each other. No state
communicates with state 5 and only state 5 communicates with state 2. We make
use of the knowledge that, as time approaches infinity, the stock will be in one of
the states that intercommunicate, 1, 3 or 4 with a probability which approaches
1

-In case “STANDARD™, we have 3 variables to determine; the probabilities
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Figure 14 The stock probabilities will approach the values shown in this diagram as time approaches
infinity if the optimal state dependent decisions are always made. The stock is given in the unit “*6
month consumption at full production capacity utilization”. The illustrated cases correspond to the
cases and definitions given in connection to Figure 13.

that the stock level is in the three intercommunicating states. We need three
linear equations to determine these probabilities. One equation says that the sum
of the probabilities is 1. Two equations contain relations between state probabil-
ities through transition probabilities. We could construct one more equation
containing transition probability information but then we get to manv equations.
The resulung stock state probabilities are shown in Figure 14. Several more
general definitions, theorems and proofs concerning the highly interesting
Markov chains and state probability distributions can be found in Grimmett and
Stirzaker (1985).

In Figure 14, we find that the probability that a stock level corresponding to the
industrial consumption of 6 month or more (at full production capacity
utilization) is optimal, is only about 20% in three of the tested cases. In the low
storage cost case, this probability is about 40%. Compare these results to the
latest real world stock levels shown in Figure 3. The similarity is obvious even if
the stock state resolution is low! It should not be difficult to increase the stock
state resolution in a purely applied and normative investigation. In any case, the
model gives “‘reasonable” results!

5. DISCUSSION

The analysis in this paper represents one step towards a multi market treatment
of the simultaneous stochastic dynamic optimization of production, stock level
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and sales in the process industry. An artificial Swedish pulp industry enterprise
has served as an illustration. The more general findings discussed here should be
of relevance in several other countries and industries. However, we must never
forget that the optimal state dependent decisions in models of this kind may be
very sensitive to the parameter estimates.

In most applications, we can not expect to find the amount of empirical data
that we would need in order to be completely sure that the suggested probability
distributions, price and cost functions are correct. In such cases, the best way to
solve the problem usually is sensitivity analysis: Make specific probability
distribution and price function parameter assumptions and optimize the decisions.
Change the parameter assumptions and check if the optimal decisions are very
different. Most likely, we will get new decisions with new assumptions. Finally,
taking a partial view of the problem, we could distribute our search for more
empirical information in a way which minimizes the errors of the optimal
decisions. Clearly. this should not be the main objective of the enterprise. A
more global approach should be better if there were no computational restric-
tions. The enterprise which maximizes the expected present value of all activities,
including the search for information, maximizes the expected budget of
consumption.

The general lesson of this analysis should be that we must take the state of the
final products markets, the raw materials markets and the entering stock level
into account when the production, stock and sales level decisions are taken.
Typical variations in such factors frequently mean much more to the economically
optimal decisions than typical variations in the factors that several simple and well
known inventory formulae take into account.

Not to forget: It is important from several points of view to build bridges
between different partial theories in economics, business and management.

Hopefully, this analysis will contribute to a more complete and interesting
theory of management, including production theory, inventory management and
market economics, in which we do not have to pretend that the future is already
known.
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NUMERICAL APPENDIX

This appendix contains the computer program which solves the stochastic
dynamic infinite horizon production and inventory Markov chain optimization
problem. The resulting linear programming problem is solved via policy iteration
which makes it possible to run the program on a standard 386 personal computer.
The language is QUICK BASIC but the code can easily be translated to other
languages and/or dialects. The program is based on seven different subroutines
and contains detailed remarks that hopefully make the program self instructive.

Table N.1 contains the indata file INDYNSTO.DAT with the parameters
suggested by the user. Table N.2 shows the result file UTDYNSTO.DAT which
will appear if the indata file in Table N.1 is used. Note that the result file also
contains the list of used parameter assumptions.
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Table N.1 An example of the parameter
indata file INDYNSTO.DAT. The file
should contain 8 lines. Explanations are
given in the text.

910912 0947 20

p o S

05

0

110 2
14 -.2 3

1
.08 .08 .08 .08 .36 .0B .08 .0B .08

Indata File Instruction

The indata file INDYNSTO.DAT should contain the following information in the
following order (compare Table N.1):

On row 1:
On row 2:
On row 3:
On row 4:
On row 5:
On row 6:

On row 7:

On row 8&:

Data, time, maximum number of main iterations (20 was satisfactory
in all tested cases.)

Profit weights (the weights of the revenue function, the production
cost function and the storage cost function in the profit function.)
The real rate of interest, r (%).

The production independent fix cost per period, FIXC.

The cost function parameters COSTA, COSTB and COSTC. Com-
pare the explanations in Figure 8.

The price function parameters PRICEA, PRICEB and PRICEC.
Compare the explanations in Figure 7.

The marginal cost of storing one unit of stock from one period to the
next, STOC.

The probabilities of the 9 different combinations of the price function
state (i) and the cost function state (j). The probabilities of the state
combinations (i, j) are given in the following order: (1,1), (1,2),
(30 02: 16220 (2. 3); (3 1) (3:2), 13, 9)

Table N.2 An example of the result file UTDYNSTO.DAT. Explanations are given in the

text.

INFINITE HORIZON MARKET DEPENDENT STOCK OPTIMIZATION
optimal solution:

The optimal values of Y(i) are:
138.2 134.2 132.3 142.5 138.5 1314.5 148.5 144.5 140.5
149.1 145.1 143.9 155.5 151.5 147.5 164.5 160.5 156.5
159.9 155.9 155.2 168.1 1e4.1 160.1 180.1 176.1 172.1
170.3 166.2 i166.1 180.3 176.3 172.5 195.3 191.3 187.3
180.3 176.9 176.9 191.9 187.9 1B5.1 206.9 202.9 199.3
The cptimal state dependent decisions are:
2 0, 2 Dy 0 0, 2 002, 22, B2 02, Z 2 2F @z 2 X,
2 Oy 2 0, 0 0, 2 3, 2 3 . 2. 3 4 2 iy 2 ¥ 2 3 .,
z2 1, 2 1, 0 0O, 2 4, 2 4, 2 4, 2 4, 2 4, 2 a,
2 2 4 2 2.4 e 0, 2 5B, 2 8y O0F ;g T OBE; 28y Z B,
2 3. B A, o TR BT TR | 208 F B s g B B 1 5,
Date = 910912 . Time = 347

Rate of interegst = 5 . Profit weights = 1 1 1 . Fix cest = 0
Production .cost parameters = 1 10 2 . Price parameters = 14 -.2 3
Storage cost parameter = 1

Probability vector = 0.080 0.080 0.080 0.080 0.360 0.080 0.080 0.080 0.080
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The Result File Interpretation

The result file UTDYNSTO.DAT contains the following information (Compare
Table N.2): First, the expected optimal present values are listed for the 45
different possible initial conditions. The first list contains 5 rows and 9 columns.
The entering stock is equal to the row number—1. Hence, the entering stock is 0
on row 1 and 4 on row 5. Each column represents one combination of the price
function state (i) and cost function state (j). The columns represent the
combinations (i, j) in the following order: Col 1=(1,1), Col 2=(1,2), Col
3=(1,3), Col 4=(2,1), Col 5=(2,2), Col 6=(2,3), Col 7=(3,1), Col
8 =(3,2) and Col 9 = (3, 3). Hence, as an example, in the middle of the table we
find the expected optimal present value if the initial stock level is 2, the initial
price level is 2 and the initial cost level is 2.

Next, the optimal state dependent decisions are listed. The order is the same as
in the value list above. For each state, the optimal decision combination, two
numbers, production and sales, is given. Finally, the parameter list is printed. We
may compare Table N.1.
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optimization program DYNBTO.BAB

e e e o e e e o o e e e e ok e o e o e ol e o o ol ke ol o o o o o o e e e ok o e o o e ot e e o e o o e e e e b b ke e e R R e e

Program DYNSTO.BAS, stochastic dynamic optimization of

REM production and sales where the stock level, the production

REM cost level and the product price level are state space dimensions.
REM Lohmander Peter 91-09-12 kl 0B.22

REM [ 222222 22222 323222 222212222122t d3 s ittt R a2 2 R 2 R 2 2
REM +++++++++++tttdtttbb bbbttt bbb bbbt t+4

REM SECTION 1, DEFINITIONS AND DIMENSIONS

FEM ++++dtbdtttttttrttttttrtttrrrttttrtrttt

DEFDBL A-Y

DIM SHARED A(45, 46), C(45), Y(45), ZD(45, 18), ZDEC(45)

DIM SHARED DAKT(45), BAKT(45, 46), YBEST(45], XLEV(45), SLEV({45)

DIM QLEV(45), PLEV(4%), CLEV(45), PRMAT(18, 1B}, OPTY¥(45)

DIM BLOC(45)

OPEN "INDYNSTO.DAT" FOR INPUT AS #£1

REM

IXMAY is the maximum production guantity and ISMAX is the
maximum sales guantity. Production and sales may take

the value zero. Hence, there are (IXMAX + 1) possible production
levels and (ISMAX + 1) possible sales levels. DECMAX is the
total number of possible decisions.

IXMAY = 2: ISMAX = 5
DECMAX = (IXMAX + 1) * (ISMAX + 1)

REM
REM
REM
REM

QMAX, PMAX and CMAX are the maximum values of the state
variables quantity, price and production cost. Hote that

the guantity may be zero and the number of guantity states hence
i= (QMAX 4+ 1). IYMAX i=s the total number of states.

OMAX = 4: PMAX = 3: CMAX = 3: IYMAX = (QMAX + 1) #* PMAX * CMAX

REM
REM

IMAX

CcLs

REM
REM
REM

IMAYX and JMAX denote the number of rows and columns in the
linear equaticn systems.
= TYMAX: JMAX = IMAX + 1

B R CEE S
SECTION INFORMATION.
R e o s

PRINT "INFINITE HORIZON STATE DEPENDENT STOCK OPTIMIZATION"
PRINT Nhwhddhohrhhhhhkkhhkbrhhhbhhdrhhhbhdbhhhbddbathhthdhhhdhds
PRINT ""

PRINT "by Peter Lochmander ver. 91-09-12 kl. 08.22"

PRINT "

FOR

REM
REM
REM

I =1 TO 10: SOUND (100 + 200 * I}, (11 - I): NEXT I

B e R e = S S e e

SECTION PARAMETER INPUT
PRI UPUT QTR ST R PR S TS IS S

GOSUB 600
DISCF = EXP(-RATEINT / 100}
GOSUB 100
GOSUB 150

REM

o o oE T S sk ot o o o o o o o o o o o o ok o o o o S e o o 2 S i e o e e o o

SECTICN 2, CALCULATION OF PRMAT(.,.), XLEV(.), SLEV(.),

QLEV(.), PLEV(.), CLEV(.) AND ZID(.,.}
O o o TP O

The price and cost state transition probability matrix is defined.
T et R e e R s 2 T R TR R R R R R R SRR SRR SRR SRR SRR R R RS R A R R Rttt
Pl = 1 TO PMAX: FOR Cl = 1 TO CMAX

(PL - 1} * CMAX + C1



FRMAT(I, 1) = PR11: PRMAT(I, 2) = PR12: PRMAT(I, 3) = PR
PRMAT(I, 4) = PR21l: PRMAT(I, 5} = PR22: PRMAT(I, 6) = PR
PRMAT(I, 7) = PR3l: PRMAT(I, B) = PR32: PRMAT(I, 9) = PR

HEXT Cl: NEXT P1

FOR I = 1 TO (PMAX * CMAX)
FROBTOT = 0

FOR J = 1 TO (FMAX * CHMAX)
PRCBTOT = PROBTOT + PRMAT(I, J)
NEXT J

FOR J = 1 TO (FMAX * CMAX)

FRMAT(I, J) = PEMAT(I, J) / PROBTOT
NEXT J

NEXT I

13
23
33

REM First, we have to define XLEV(KDEC) and SLEV(KDECj. They are two
KEM vectors that give the production level and the sales level

REM respectively, as functions of the decision index KDEC.
EEM fe e v ok o e o o o o e e o o o o o ok o ok o ok e oy ok e ok e i o ok ke e ol o e o o ol ol o oy i e e e e ek e o o o e e

FOR X = 0 TO IXMAX: FOR 5 = 0 TO ISMAX: KDEC = 1 + X * {ISMAX + 1) + S

XLEV(KDEC) = X: SLEV(KDEC) = 5
NEXT S: NEXT X

REM Now, for each state, i, we want to know the stock level,

QLEV (i),

FEM the price level, PLEV(i), and the preduction cost level, CLEV(1).
REM 222222 ERE RSS2 E XSS SR RS2SRRSR SRS SRR R R Rt bRt S b 8

FOR Q = 0 TO QMAX: FOR P = 1 TO PMAX: FOR C = 1 TO CMAX
T =Q * PMAX * CMAX + (P - 1) * CMAX + C

QLEV{I) = Q: PLEV(I) = P: CLEV(I) = C

NEXT C: NEXT P: NEXT Q

REM Here, the wvalues of the instant economic net
REM profits are determined.
FEH EEEEEESSSSRSEESSSSSES SRS EEE R SRR RRE S
FOR I = 1 TO IYMAX
P = PLEV(I): C = CLEV(I): Q = QLEV(I)

FOR DEC = 1 TO DECMAX

PROD = XLEV(DEC): SALES = SLEV(DEC)

PCOST = (COSTEB + COSTC * (C — 2)}) * PROD
IF PRCD > 0 THEN PCOST = PCOST + COSTA
IF PROD = 0 THEN FCOST = 0

IF PCOCST < 0 THEN PCOST = 0

PRICE = PRICEA + PRICEB * SALES + PRICEC * (P - 2)
REVENUE = PRICE * SALES

STOCKOUT = Q + PROD - SALES

CSTOCK = CSTO * STOCKOUT

IF STOCKOUT < 0 THEN CSTOCK = 0

PROFIT = PROFR * REVENUE - PROFPC * PCOST - PROFCS * CSTOCK - FIXCOST

REM **+* We can not sell more than stock + production.
IF SALES > (Q + PROD) THEN FROFIT = -1000

o ko

REM #**+ We can not store more than max capacity until next period. #**

IF (Q + PROD - SALES) > (QMAX + 1)} THEN PROFIT = -1000
ZD(I, DEC} = PROFIT
NEXT DEC

NEXT I

REM ++444+4tdtttdtttttttttttttittdttttittstttttttttttttts
REM SECTION 3, THE INITIAL GUESS IS THAT THE DECISIONE

REM THAT ARE OPTIMAL IN A ONE PERIOD PROBLEM ARE OPTIMAL
REM IM THE INFINITE HORIZON PROBLEM.
BEM +++++++++4tdtiddbddtitttttttttbbbdtdtttdbbttttttttst
FOR I = 1 TO IYMAX
OPTY(I) = -1
FOR J = 1 TO DECMAX
EVE = ZD(I, J)
IF EVE > OPTY(I) THEN ZDEC(I) = J
IF EVE > OPTY(I) THEN OPTY(I1) = EVE
NEXT J
¥Y(I} = OPTY(I)
NEXT I
GOSUB 100
GOSUB 150
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REM SECTION 4, THE EXPECTED OPTIMAL PRESENT VALUES IN THE DIFFERENT
REM STATES ARE CALCULATED UNDER THE ASSUMFTION THAT THE DECISIONS
REM ACCORDING TO THE INITIAL GUESS ARE MADE.

REM ++++++++++tttddt bbbt bbb bbb bbb bbb b bbb b b

REM The eguations are determined and placed in the equation system.
GOSUB 200

REM The eguation system is solved.

GOSUE 400

REM If there are any errors, these may be found.

GOSUB 300

SOUND 1200, 10

IF ¥YTEST > 0 THEN SOUND 2000, 20

IF YTEST > 0 THEN STOP

REM The new solution is placed in the value vector ¥(.)

FOR I = 1 TO IYMAX: Y(I) = C(I): NEXT I
REM The sclution is shown on the screen.
GOSUB 100 :

GOSUB 150

REM +++++++++++++4+++++H++++ -+
REM SECTION 5, THE MAIN LCOP STARTS HERE.
REM ++++4++++4+++ 44+
TOTSTOP = 0O

FOR IMAIN = 1 TOQ IMAINMAX

REM +++++++++++tddtttbbtttttttttttbbttditdbbtttttttittittd
REM SECTION &, THE MAIN LOOP STOFPFINGC CRITERION IS TESTED.
REM MAYBE THE ITERATION STOPS AND THE RESULTS ARE PRINTED.
REM +++++++++++++++++HH bt b+
EVSTOP = @

FOR I = 1 TO IYMAX: EVSTOP = EVSTOP + Y(I): NEXT I

REM POSSIBLY, IT IS TIME TO BE SATISFIED WITH THE SOLUTICN.
IF EVSTOP = TOTSTOP THEN GOSUB 500

IF EVSTOP = TOTSTOP THEN END

TOTSTOP = EVSTOP

REM ++++++++++++++++++++++ 44+ttt 4 44
REM SECTION 7, THE STATE LOOP STARTS HERE.
REM ++++++++4++++4+++++++++++4++++4+++++ 444+
FOR IY = 1 TO IYMAX

DECOLD = EDEC(IY)

REM +++++++++++++tttttbbd bbbt bbbt b+
REM SECTION B, THE DECISION LOOP STARTS HERE.
EEM +++++++++++++++tttttrtt bt rdrt b+ bd4+4

YEVOPT = -1
FOR IDEC = 1 TO DECMAX

REM CALCULATION OF TRANSITION PROBABILITIES FROM STATE IY.

FOR J = 1 TO IYMAX: BLOC(J) = 0: NEXT J

REM THE STOCEK IN THE NEXT PERIOD, STOCK2, 1S CALCULATED.

STOCKERR = ©

STOCK1 = QLEV(IY): STOCKDEV = XLEV(IDEC) - SLEV({IDEC)

STOCK2 = QLEV(IY)} + STOCKDEV

REM IF THE ENDING STOCK IS TOO SMALL OR TOO BIG, THEN STOCKERR = 1.
IF STOCKZ < 0 THEN STOCKERR = 1

IF STOCK2 > QMAX THEN STOCKERR = 1

IF STOCKERR = 1 THEN GOTO 5

REM THE RELEVANT INSTANT PROFIT IS PLACED IN DAKT(.).

GAKT (IY) = ZD(I¥, IDEC)

REM THE PROBABILITIES OF PRICE AND COST CHANGES ARE CALCULATED AND
REM DISCOUNTING IS PERFORMED.

Pl = PLEV(IY): C1 = CLEV(IY): PCSTATEl = (Pl - 1} * CMAX + Cl

FOR PCSTATEZ = 1 TO (PMAX * CMAX)

STATEZ = STOCK2 * PMAX * CMAX + PCSTATE2

PROB2Z = PRMAT{PCSTATEl, PCSTATE2)

BLOC (STATE2) = PROB2 * DISCF

MEXT PCSTATE2
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REM CALCULATION OF THE TEST VALUE, YEV, OF ¥(IY) IF THE DECISION IDEC IS
REM USED NOW AND THE OLD DECISIONS SET IS USED IN THE FUTURE.
YEV = DAKT(IY)

FOR J = 1 TO IYMAX

YEV = YEV + BLOC(J) * ¥(J)

HEXT J

IF YEV < YEVOPT THEN GOTO &

DECOPT = IDEC

YEVOPT = YEV

5 REM

HEXT IDEC

IF DECOLD = DECOPT THEN GOTO 6

IF (Y(IY} + .00001) > YEVOPT THEN GOTQ &

ZDEC(IY) = DECOPT

REM THE VERY BEST 'EQUATION IS PLACED IN THE MATRIXES BAKT(.,.) AND DAKT(.).
FOR J = 1 TO IYMAX

BAKT{IY, J) = BLOC(J)

NEXT J

DAKT(IY) = ZD(IY, DECOPT)

PRINT "Y(":; I¥; ") may become "; YEVOFT;

PRINT "if decision ": XLEV(DECOPT);: SLEVIDECOFT); " is made."
SOUND 600, 3

REM =+++4+drtddddttttitttrttttttrtddddddbdtdttrttttttttrttttbttt bttt
REM SECTION 9, THE EQUATION SYSTEM SUBRGUTINE IS CALLED FOR AND THE
REM POSSIBLY NEW VALUES CF Y(I), Ci(I), ARE CALCULATED.

REM +4444+44+++++++ttttdtdbddbtbttttttrttrt bttt bttt bbbttt bbb+

REM THE EQUATICN SYSTEM MATRIX IS DETERMINED.
GOSUB 200

REM THE EQUATION SYSTEM IS SOLVED.

GOSUB 400

REM POSSIBLE ERRORS MAY BE DETECTED.

GOSUB 300

SOUND 1200, 7

REM IF YTEST = 0, THEN NEW SOLUTION IS PLACED IN THE VECTOR Y(I).
ZDEC(IY) = DECOLD

IF YTEST > 0 THEN GOTO 6

ZDEC(IY) = DECOPT

FOR I = 1 TO IYMAX: ¥{I) = C(I): NEXT I

& REM

REM THE SOLUTION IS SHOWN ON THE SCREEN.
GOSUB 100

NEXT IY
NEXT IMAIN
END



100 REM

REM SSSSSSS55585585588585555555585558855558585888885558
REM SUBROUTINE 100, OUTPUT OF PRELIMINARY RESULTS.
REM SSSS5S55S5555555555555555555555555555555858555585
cLSs

PRINT "INFINITE HORIZON MARKET DEPENDENT STOCK OPTIMIZATION"
PRINT "™

PRINT "The optimal values of ¥(i) are:"

FOR I = 1 TO IYMAX

J =1 - INT(I / 9) * 9

PRINT USING "#####.#"; Y(I);

IF J = 0 THEN PRINT "™

NEXT I

FRINT ™"

PRINT "The optimal state dependent decisions are:"
FOR I = 1 TO IYMRX

J=1I - INT(I / 9j * 9

PRODU = XLEV(ZDEC(I)): SALES = SLEV(ZDEC(I})

PRINT PRODU; SALES; ", ";

IF J = 0 THEN PRINT "

HEXT I

PRINT ™"

IF IY < 46 THEN PRINT "Main loop = *; IMAIN; ". State "; IY; " optimized."

PRINT "Date = "; DATE; ". Time = "; TIME

PRINT "Rate of interest "; RATEINT;

PRINT ". Profit weights ". PROFR; PROFPC; PROFCS;

PRINT ". Fix cost = "; FIXCOST

FRINT "Production cost parameters = "; COSTA; COSTB; COSTC;
FRINT ". Price parameters = "; PRICEA; PRICEE; FRICEC
FRINT "Storage cost parameter = "; CSTO

FRINT "Probability vector = ";

PRINT USING "##.###"; FR11; PR12; PR1l3; PR21l; PR22; PR23; PR31l; PR32; PR33

RETURN

150

REM S555555555555555555555555555555555555555555555555555585555555
REM SUBROUTINKE 150, CQUTPUT OF FINAL RESULTE TO FILE UTDYNSTO.DAT
REM S55555555555555555555555555555555555555555555555555555555588
OPEN "UTDYNSTO.DAT" FOR OUTPUT AS #2

PRINT #2, "INFINITE HORIZON MARKET DEPENDENT STOCK OPTIMIZATION"
PRINT #2, "Optimal solution:"

PRINT #2, ""

PRINT #2, "The optimal values of ¥(i) are:"

FOE I = 1 TO IYMAX

J=1I=-INT(I / 9) * 9

PRINT #2, USING "#####.#"; Y(I);

IF J = 0 THEN PRINT #2, ""

NEXT I

PRINT #2, ""

FRINT #2, "The optimal state dependent decisions are:"

FOR I = 1 TO IYMAX

J =1 - INT{I / 9) * &

PRODU = XLEV(ZDEC(I)j: SALES = SLEV(ZDEC(I))

PRINT #2, PRODU; SALES; ", ";

IF J = 0 THEN FRINT #z2, ""

NEXT I

PRINT #2, ""

PRINT #2, "Date = "; DATE; ". Time = "; TIME

PRINT #2, "Rate of interest = "; RATEINT;

PRINT #2, ". Profit weights = "; FROFR; PROFPC; PROFCS5;

PRINT #2, ". Fix cost = "; FIXCOST

PRINT #2, "Production cost parameters = "; COSTA; COSTB; COSTC;
PRINT #2, ". Price parameters = "; PRICEA; PRICEE; PRICEC

PRINT #2, "Stocrage cost parameter = "; CSTO

PRINT #2, "Probability vector = ";

PRINT #2, USING "##.###%; PR1l; PR12; PR13; PR21; PR22; PR23; PR31; PR32;
CLOSE #2

RETURN

PR33



200 REM
REM 8S5S555555855555558585558858585555555555585855555855855585355585858555858
REM SUBROUTINE 200, THE RELEVANT EQUATIONS (WITH RESPECT TC THE
REM INITIALLY SUGGESTED DECISIONS) ARE DETERMINED AND PLACED
REM IN THE EQUATION SYSTEM MATRIX A(I,J).
REM SSSS5SS555SS5555S55555S555555555555555555555555555555558555588588
REM The decision dependent coefficients are
REM placed in the DAKT and BAKT matrixes.
REM First, BAKT(i,j) = 0 for all i,
REM wwddrdddkdnwddhddbdddhddddddthdhddddddddiddd
REM o o o o o e e o o o o o o o o o e o o o o o e I A o o o o o o o o o o o o ok e
FOR I = 1 TO IMAX: FOR J = 1 TO JMAX: BAKT(I, J) = 0: NEXT J: NEXT I
REM The stock level in the next period, STOCK2, is calculated.
REM #kdhdhdhdhdthdhdddhddtddddidkiihdh kb wdddde bk dododeooe koo o o de e deode e e ok e e ke ke
FOR I = 1 TO IYMAX
LOCDEC = ZDEC(I)
STOCK1l = QLEV(I): STOCKDEV = XLEV(LOCDEC) - SLEV(LOCDEC)
STOCK2 = QLEV(I) + STOCKDEV
IF STOCK2 < 0 THEN GOTC 3
IF STOCK2 > QMAX THEN GOTO 3
REM The relevant instant profit vector is placed in DAKT(i).
REEM tE 2 2R 42222 a2 iid sttt s R R & Rt S bR 22
DAKT(I) = ZD(I, EZDEC(I)}
REM The probabilities of different changes in the cost and price levels
REM are calculated. Discounting is performed.
FEM #*tkhhkahhhkhhhhhdhabddhhahhthdhddbbbhbiadhbhhbdddddeddbhddhrbbdddhhhdd
Pl = PLEV(I): C1 = CLEV(I): PCSTATEl = (Fl - 1) * CMAX + Cl
FOR PCSTATE2 = 1 TO (PMAX #* CMAX)
STATE2 = STCCK2 * PMAX * CMAX + PCSTATEZ
PROB2 = PRMAT(PCSTATEl, PCSTATE2)
BAKT(I, STATE2) = PROB2Z * DISCF
NEXT PCSTATE2
3 REM
NEXT 1

REM The relevant linear equation svstem is placed in the matrix A({i.j).
REM o v e g e e e e ok e e b i e A g o o e W W W e o o o o o e o o o o e o o o o o o e e ol ke i e e e ol ol e o ok ke e e ke ok

FOR I = 1 TO IMAX: FOR J = 1 TO JMAX: A(I, J) = 0: NEXT J: NEXT I
FOR I = 1 TO IMAX: A(I, I) = 1: NEXT I

FOR I = 1 TO IMAX: A(I, JMAX) = DAKT(I): NEXT I

FOR I = 1 TO IMAX: FOR J = 1 TO IMAX

A(I, J) = A(I, J) - BAKT(I, J)

NEXT J: NEXT I

RETURN

300 REM

REM S555585558555555585555555555555555555555555555555555555555585558

REM SUBROUTINE 300, TESTS OF THE SOLUTION OF THE LINEAR EQUATION

REM SYSTEM ARE PERFORMED.

REM SGESL5S55555555555585555555555555555555585555555555555855555858

REM Is the obtained sclution reascnable? We know from theory that

REM Y(i) (for every i) should increase or be unchanged after each

REM iteration in the optimal direction. It is possible that there

REM are numerical problems in the linear eguation system subroutine

REM in some iterations. Maybe, there is linear dependence in the

REM automatically calculated eguation system. Such cases may give all

REM kinds of large errors in the results. Hence, here is a test.

REM If (1) every Y(i) value increases or is unchanged and if (2) the

REM sum of relative increases in the Y(i) values is less than 106, then the
REM new solution is accepted. Otherwise, the old solution is still assumed
REM to be the best solution among the tested soclutions.

YTEST1 = 0

FOR I = 1 TO IMAX

IF C{I) < Y(I) THEN ¥YTEST1 = 1

NEXT I

YTESTZ2 = 0

YRELTOT = 0O

FOR I = 1 TO IMAX

YRELINC = C(I} / (¥(I) + 1)

YRELTOT = YRELTOT + YRELINC

HEXT I

IF (YRELTOT / IMAX) > 1000 THEN YTEST2 = 1

REM The first time the equation system is solved, the Y values increase very
REM much. Hence, the test value is adjusted in this case.

IF IMAIN = 1 THEN YTEST2 = 0

YTEST = YTEST1 + YTEST2

IF YTEST > 0 THEN SOUND 1000, 2

PRINT " (NEG. DEVIATION, REL. INCREASE) = ("; YTEST1; ", “; YTEST2; ")"
RETURN



FOR

P. LOHMANDER

REM

S5C555555555555555555555555555555585555555555555558888

SUBROUTINE 400, THE LINEAR EQUATION SYSTEM IS SOLVED.
555555555555555555555555555555555555555555555555555858

P SRR R R RIS s s s 22222 s TS S22 RS R2 222 22 22 2222 2 R L2 0 8 &2
Here, the linear eguation system is sclved via the Gauss method,
Ref: Wittmeyer-Kock, I., Elden, L., Lrobok i numeriska metoder,
University of Linkping, Dept. of Math., 581 83 Linkping, Sweden,
1986
t***ii*i***ﬂ*****i*t***i*it*ii!*!!l‘*'**************i*********ﬁ***i

I = 1 TO THMAX

ROWCOEFMAX = I

FOR K = (1 + I) TO IMAX

IF ABS(A(K, I)) > ABS(A(ROWCOEFMAX, I)} THEN ROWCOEFMAX = K

NEXT E .

FOR L = 1 TO JMAX

€1 = A(I, L)

€2 = A(ROWCOEFMAX, L)

A{I, L) = C2

A(ROWCOEFMAX, L) = C1

NEXT L

FOR II = (I + 1) TO IMAX

COEF = A(II, I) / A(I, I)
FOR J = 1 TO JMAX

A(II, J) = A{II, J) - COEF * A(I, J)
NEXT J
NEXT II
NEXT I
FOR IBACK = 1 TD IMAX

I =

IMAX - IBACK + 1

FOR II = 1 TO (I - 1)
COEF = A(II, I} / A(I, I)

FOR J = 1 TO JMAX

A(II, J) = A({II, J) - COEF * A(I, J)
NEXT J
NEXT II
NEXT IBACK
FOR I = 1 TC IMAX
A(I, JMAX) = A(I, JMAX) j A(I, TI)
C(I) = A(I, JMAX)
NEXT I
RETURHN
500 REM
REM S5S55S555555555555555555555555555555555858
REM SUBROUTINE 500, FINAL RESULTS AND SOUNDS.
REM SSSSS55S5555S5555555555555585555555555558S88
GOSUB 150
GOSUB 10C
FOR I = 1 TO 20: SOUND (1000 + I * 100), 5
SOUND (3000 - I # 100), 5: NEXT I
RETURN
6C0 REM
REM S5555558555555555555555555555555555555555555555555555555585S
REM SUBROUTINE 600, THE USER DEFINED PARAMETERS ARE LCADED FROM
REM THE FILE INDYNSTO.DAT.

REM

SESSSE 8555558555588 5588555585555555555555885885888858585588888

INPUT #1, DATE, TIME, IMATNMAX

INPUT #1, PROFR, PROFPC, PROFCS

INPUT #1, RATEINT

INPUT #1, FIXCOST

INPUT #1, COSTA, COSTB, COSTC

INPUT #1, PRICEA, PRICEB, PRICEC

INPUT #1, CSTO

INPUT #1, PR11, PR12, PR13, PR21, PR22, PR23, PR31, PR32, PE33
RETURN



