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the forest industry enterprise

Abstract

Most economic planning situations in complex enterprises have the following
properties: (1) Many activities must be spatially coordinated, (2) decisions at time t
affect the possible activities in later periods and (3) important information, particularly
concerning future product prices, is not available in advance. Sequential and spatially
coordinated decisions are necessary. This paper includes a review of important
economic principles, observations and methodological progress in this area. Particular
emphasis is directed towards the method of stochastic optimal control in discrete time
with linear programming solutions for each possible stage and state. The intertemporal
coordination problem of the integrated forest industry enterprise in a stochastic
product market is defined.

Analytical and numerical optimization solutions are derived. Variable reduction is used
to simplify the simplex subproblem and the main results of a typical solution are
discussed.

When the future prices of the final products are stochastic;

a. The expected present value of the profit is higher when the suggested method is used
instead of deterministic multi period linear programming.

b. The expected dual variables (shadow prices) associated with the industrial capacity
restrictions are underestimated via deterministic multi period linear programming.

¢. Industrial flexibility is valuable and the optimal levels of maximum production
capacity are higher than in a deterministic world.

A computer program for stochastic dynamic programming with a linear programming
subroutine is designed and included.



1. Introduction

1.1. The issue

This study covers several topics. A combination of these will in this paper be shown to
be very useful in the economic planning of integrated forest industry enterprises.

The ambition is to accept and explicitly make use of the properties of most real world
planning problems: The future can not be perfectly predicted, many activities must be
coordinated already in the present time period and present decisions and activities
influence the planning and activity options in the future.

Clearly, the structure of this problem is the following: Since the future conditions
(parameters) are not yet known, it is generally optimal to have flexibility. Adaptive
optimization is relevant. Coordination of the present activities require efficient
deterministic planning tools. In this paper, the suggestion is to use stochastic dynamic
programming, which serves as the adaptive optimization tool, and linear programming
(possibly quadratic programming) which takes care of the deterministic optimization
and coordination of the decisions at each point in time and for each possible stochastic
state of the system.

1.2. On the relevance of the topic

The methodology created in operations analysis has found many applications in the
forest — forest industry sector. Lofgren (1989) writes that the easily available methods
of operations analysis, such as linear programming, are based on the assumption of
perfect information concerning future prices. He also claims that adaptive optimization
may be useful if the price probability distribution is known but that the common sence
of the forest owner most likely works as well as explicit optimization. Lofgren states
that the forest economic optimization may be performed on the stand level in case the
optimization problem is truely linear (exogenous price and cost parameters in the
objective function) and there are no (arbitrary) "even harvest level" (or similar)
restrictions on the total harvest program.




In the analysis of this paper, we will consider the comments presented by Léfgren
(1989).

~ We will not assume that future conditions (prices etc.) are known.

— We will not, consider problems of low complexity (which make "common sence
solutions" trivial and optimal).

- We will consider economic planning problems where many activities must be
coordinated and explicit use of constrained optimization can not be avoided.

1.3. Past efforts and findings

It is suggested that the following classification is used:

a. Deterministic integrated enterprise economics and planning

Koopmans and Beckman (1957), Andersson (1963), Naslund (1965), von
Malmborg (1967), Lindgren and Nislund (1968), Lonner (1968), Holvid (1970),
Ljungman (1971), Nilsson (1974), Lohmander (1985), Lohmander (1988f)

Koopmans and Beckman (1957) gave the foundations of some of the problems of
interest in the present analysis, particularly those of economic location of activities.
Within the natural resource enterprise, the transportation problem is typically a
subproblem of great importance. However, it is dangerous if the transportation problem
becomes the only area of interest. All possible activities within the firm are of relevance
in the planning situation and suboptimization should be avoided. Andersson (1963)
looks at the district management problem in forestry from a less mathematical but
more operational view. Some effort is directed towards the collection of planning data
and data reliabilty within the enterprise. Nislund (1965) suggests relevant methods
from management theory to be used in the forest sector and von Malmborg (1967)
shows how to use linear programming in the integrated forest — farm enterprise.
Lindgren and Néslund (1968) give a survey of possible planning approaches in the
forest sector based on mathematical optimization, particularly linear programming.
They also report from past application experiences. The option of decomposition and
decentralized decision making is stressed through a detailed example from a forest
enterprise with many departments. Lonner (1968) presents a system for short term
planning of forest district management including harvesting,




storage and transportation. Clearly, one of the key reasons why short term planning is
applied is the presence of unpredictable situations. Nevertheless, deterministic methods
were used. Also the studies by Holvid (1970) and Ljungman (1971) are based on
deterministic linear programming. Nilsson (1974) attacks one of the very unpredictable
planning siﬁua.tions, namely the windthrow area management. Lohmander (1985)
contains an introduction to the use of deterministic linear programming in the
integrated forest enterprise and Lohmander (1988f) shows how to derive simple harvest
activity selection rules from a formal linear programming model.

b. Stochastic integrated enterprise economics and planning
Bellman and Zadeh (1970), Hakansson (1971), Nilsson (1979), Hof, Robinson and
Betters (1988)

It is difficult to find a representative set of publications in this class. However, some
interesting ideas have been presented by the suggested authors. Note that approaches
consistent with stochastic optimal control theory seldom have been used in the past
applications.

c. Deterministic forest stand economics and planning
Naslund (1969), Heaps (1984), Johansson and Lofgren (1985), Heaps (1986),
Lohmander (1988d), Magnusson (1988), Valsta (1988), Lohmander (1989)

These references are relevant in this paper mainly to show that the forest stand
management problem has gained much attention in the literature. Clearly, in most
cases, the assumptions of "stand separable management" are seldom satisfied. Usually,
there are economies of scale in harvesting operations, technical restrictions etc. that
make separability vanish. Coordination and constrained optimization becomes
important.



d. Stochastic forest stand economics and planning
Norstrom (1975), Risvand (1976), Lohmander (1987a), (1988b), (1988c), (1988e)

Since it has recently been realized that the future is far from predictable, the explicit
treatment of stochastic future events and adaptive optimization have become natural
ingredients in forest economics. This new interest is largely a result of the discoveries in
catastrophe and chaos theory and of course the associated sciences biology and
chemistry. Two recent publications in that area are Puu (1987) and Puu (1989).

e. Deterministic optimization

Bellman (1953), Hallsten (1958), Wolfe (1959), Wolfe and Dantzig (1962), van de
Panne and Whinston (1964), Balinski (1965), van de Panne and Whinston (1966),
Denardo (1970), McCormick (1970), Florian and Robillard (1971), Lemke, Salkin and
Spielberg (1971), Geoffrion and Marsten (1972)

f. Stochastic optimization and estimation

Manne (1960), Breiman (1964), Cocks (1968), Derman and Veinott (1972),
Garstka and Rutenberg (1973), Satia (1973), Smallwood (1973), Kumar and Varaiya
(1986), Lohmander and Helles (1987b), Kurzhanski (1988), Williams (1988)

g. Stochastic optimization with deterministic constrained optimization subproblems

Simon (1956), Breiman (1964), Rockafellar and Wets (1978), Rockafellar and
Wets (1986), Rockafellar (1987), Rockafellar and Wets (1987), Byrnes and Kurzhanski
(1988), Varaiya and Wets (1988)

This field is the one which makes the solution of the problem approached in this paper
possible. The author is convinced that most real world problems in principle should be
solved via methods in this class. The analytical and numerical development of these
methods is of great importance to future decision making in a complex and
unpredictable world.



h. Recent contributions to the general stochastic investment theory
Baldwin (1982), Brennan and Schwartz (1985), McDonald and Siegel (1985),
McDonald and Siegel (1986), Pindyck (1988)

McDonald and Siegel (1985) observe that the profit is a kinked convex function of price
when there is an option to shut down production during low price periods. Hence, it
can be shown that mean preserving increases in price risk (nonstrictly) increase the
expected profit. This paper contains a relaxation of their assumptions: A natural
resource (forest) which can be extracted (harvested) over time in different ways and
alternative processing plants (pulp and paper mills, saw mills etc.) are explicitly
introduced. Hence, it will turn out that product price risk is valuable to the enterprise
since: 1/ There is an option to shut down (or just decrease) total production during low
price periods and 2/ The natural resource may be distributed between the different
processing plants in the most profitable way, depending on the levels of the different
product prices.

Pindyck (1988) presents a continuous time model with irreversible investments and
stochastic prices. He finds, as in this paper, that the marginal capacity values (shadow
prices) are increasing functions of price variability. Pindyck makes the special
assumption that there is an option to add capital continuously and incrementally.
Hence, there is little reason to invest before the high prices have been observed. The
conclusion is that firms should hold less capacity than if prices were predictable and
investments were reversible. Finally, Pindyck stresses that the result partly is a
function of the particular assumptions and that more generalized models should be
studied. He suggests that numerical methods should be used to solve these more
complex problems. The authour of this paper is convinced that the main result (less
capacity) derived by Pindyck would have been different (more capacity) in a model
where investments take time. It generally takes many years to construct a pulp mill,
not to mention the time it takes in Sweden to get a building and capacity expansion
permission ! Hence, if demand rapidly increases, there is no time available to build a
new factory. It is already too late.



1.4. The deterministic problem

A simplified "standard" formulation of the integrated forest industry enterprise
problem, different versions of which can be found in Lohmander (1985) and in many of
the earlier publications, is the following:

= _rt - . = " . D. . .
I}TI]?E,E %}e ? ctlHtl ??gtustu + ? ptjxt.] (1)
8t L H, < A, (for each i) (2)
t
X _<_'1'tj (for each t, j) (3)
‘ptthi - B Stij =0 (for each t, i) (4)
J

The objective function (1) is the total present value of all future activities, II.

ITis a function of the harvest area levels, H, the transport levels, S, and the industrial
production levels, x. t, 1, i and j denote time period, rate of interest, stand index and

production plant index. Ai denotes the initial area in stand class i, It‘ is the production
capacity in plant j at time t, Y is the stand density (volume per area unit) in stand
class i at time t and ﬁtj is the input coefficient in plant j at time t.




Figure 1.
The "traditional" integrated forest industry enterprise problem.
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¢, g and p are the harvest cost per area unit, the transportation cost per volume unit

and the final product net price (price minus variable costs). p (and the transformed
price p, compare the mathematical appendix) are in the rest of the analysis called
"product price". (2) represents the intertemporal harvest area restriction for each stand
class, (3) is the production capacity restriction for each plant and time period, (4) are
the transport balance equations in the different forest areas and (5) expresses the
transport balances in the different plant nodes.

There exist practical problems in the application of the model (1) - (5). Some of these
are:

a. The size of the simplex matrix increases rapidly with the number of periods, the
number of stand classes, the number of plants etc.. Hence, at least the number of
periods has to be restricted and the solution in the final periods can not be regarded as
relevant to the real world decision problem. (In the final model period, there is no
reason to save any forest resources for future periods.)

b. Nonlinearities may exist in the real world decision problem. Some of these may be
taken care of by quadratic programming (as long as the objective function is concave
and the feasible region is a convex set).

c. Particularly if we make the plant capacity investments (and hence the plant
capacities in future periods) endogenous, economies of scale may exist that make the
objective function strictly convex. Then, linear programming becomes irrelevant.

d. Integer programming may be necessary when investment activities are endogenous.

e. The coefficients of the "real world" objective function are stochastic (or at least very
expensive to predict perfectly for t > 1).
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Figure 2.
A typical sample path of a product price process according to the numerical analysis in

this paper. The net price is represented by a first order discrete time autoregressive
process defined via the transition probability matrix given in the numerical appendix.
The discreté state space contains 9 states, which makes the transition probability
matrix contain only (9 X 9 =) 81 elements. This makes it possible to use the dynamic
programming method with limited execution time. The discrete state process
"approximates" a stationary continuous state discrete time process:

Pii1 =A +BP, + ctsuchthatA>0,[]<B< 1, € € N(0,0)

In the illustration, A = 50, B = .5, ¢ = 10.
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f. Clearly, all coefficients in the simplex problem are difficult (or expensive) to predict
fort > 1.

The ambition of the analysis presented in this paper is mainly to treat the problem e.:
stochastic objective function coefficients. The reason is that the other simplex problem
coefficients frequently are much easier, much less expensive, to predict. More
specifically, the main effort will be directed towards the problem where the product

prices, Etj’ can be described as a stochastic Markov process. The decisions are taken

sequentially when the prices p, . have been observed (without noise).
t)

The essential questions that should be possible to answer via the presented approach
are the following:

— How should the activities within the integrated forest industry enterprise be
coordinated in order to satisfy the balance equations ?

— How sensitive are the optimal activity levels in different parts of the enterprise to the
states of the product markets ?

— What is the total effect of stochastic product prices on the expected profitability of
the integrated enterprise 7

— Are the optimal investment program and the optimal plant capacities functions of the
stochastic properties of product prices ?

— What is the value of flexibility in the stochastic environment ?

2. Analysis
2.1. Analytical investigation

This section contains the definition of a simplified linear programming problem which
is further analysed in the mathematical appendix. This formulation may be interpreted
as the optimization problem in a future period. All coefficients are known except for
some objective function coefficients, prices, which are stochastic in the future period.
The future decisions are adaptive: First the coefficient outcome is observed without
noise and then the optimal activity decisions are taken. In a multi period problem, the
decisions in earlier and later periods are connected via the forest resource constraint. If
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more i8 harvested in period one, then less can be harvested in the future. Clearly, the
solution to the "complete" global problem (when the objective function is the expected
present value of the profits in all periods), must give consistent expected marginal
valuation of the (common) forest resource. In other words, the expected dual variable
associated with the forest resource constraint must have the same value in the present
period and in the future. This is easily shown via stochastic dynamic programming.
Hence, the main effort in this section will be to investigate how the expected dual
variable vector is affected by increasing risk in a future period. The results may be used
in the shape of parameter changes in the optimization problems of the earlier periods.
Hence, some important properties of the optimal primal and dual solutions under the
influence of stochastic objective function coefficients are derived. The general results of
relevance to optimal economic decisions in the integrated forest — industry enterprise
are discussed in connection to presented figures.

The simplified problem is :
n
maxII= X px, (6)
j=1 J]
n
s.t. Y ax; <R (7)
=1 !
X; < I.i for j € (1,...,n) (8)

IT denotes total profit and R is the total forest resource stock to be used in the period
under consideration. Each X is expressed in a unit such that the forest resource input
required in the production of one xj is equal to . I. is the maximum factory capacity
expressed in the relevant x. unit and p; denotes the unit net price. A more general
version of the same problem, which is the first presented version in the mathematical
appendix, can easily be constructed.
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Figure 3.

The simplified integrated forest industry problem. The transportation activities are not
treated as primal variables. The objective function coefficients of the industrial
production activities x. are reduced by the unit costs that derive from harvesting and
transporta.tioh. The activities in the different factories are connected via the forest
resource constraint.
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In figure 3, the physical meaning of the simplified problem is shown. The set of possible
(unique) optimal solutions under different assumptions are highlighted in the figures 4,
6, 7 and 8. The expected profit of the firm is strictly higher in the presence of price
variability than in the deterministic case. This is shown in figure 5. The mathematical
appendix contains Kuhn-Tucker analysis of the constrained optimization problem and
some comparative statics analysis essential to the later analysis. In particular, the dual
variables (the marginal values of the resources: the forest and the factory capacities)
are determined as functions of the product prices. Since each corner solution in the
linear programming problem is defined by a specific equation system, the relevant
equation system and hence the partial derivatives of the dual variables with respect to
the parameters are functions of the parameters.

In figure 9, the key results from the mathematical appendix are shown in graphical
form. It is found that the dual varables (shadow prices) have interesting properties
with respect to risk effects: The shadow prices associated with the factory capacities
are kinked convex functions of every product price. According to the Jensen inequality,
this means, which is also shown in figure 9(b) and 9(c), that the expected shadow
prices (marginal values) of the factory capacities are (nonstrictly) higher in case prices
are stochastic than if they are known constants (and the expected pricé in the
stochastic case is equal to the price in the constant case). In figure 9(a), it is found that
the shadow price of the forest resource is a kinked concave function of every product
price (for positive prices) and a kinked convex function (for prices in the neigbourhood
of origo).

Hence, if prices may take positive and negative values (which is possible since prices
here are defined as net prices), the expected marginal forest resource value is
ambiguously affected by increasing risk in the prices. If, on the other hand, prices are
always positive, then the Jensen inequality makes the expected marginal forest resource
value (nonstrictly) lower in the presence of risk than in the case of constant prices
(when the constant price is equal to the expected price in the stochastic case).
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Figure 4.
The linear programming problem when there are two possible products, x, and X,.

Depending on the price vector, two different solutions are optimal. Of course, if Py =
Pys then the optimal solution is not unique. In the analysis, it will everywhere be

assumed that the forest resource constraint and all of the industrial capacities (I is
transformed to I in the mathematical appendix.) Ij, j € (1,...,n) except for one of them
restrict the optimal solution. This means that the solution is determined by n linear
equations. Hence, we may assume that the number of strictly positive X is also equal
to n. In the figure, n = 2 and the number of strictly positive X is 2.




16

Figure 5.

*
The graph shows I, the optimal value of the objective function in the two variable
problem when the industrial capacities are very high and never restrict the optimal

*
solution. If-p1 < Py it is optimal not to produce x, at all. Hence, 11 is not affected by
changes in p; as long as p; < py. If Py > Py then all of the forest resource should be

used in the production of X and Xo, Must be zero. Then, II* is proportional to p;. We
assume that p, is stochastic. Prob(p, = p@ = Prob(p; = p;) = 1/2. Note that 1'1* is
a kinked convex function of p,. Clearly, from the Jensen inequality, E(I (p,)) 2

H*(E(pl)). Thus, stochastic product prices improve the expected profit when adaptive

*
optimization is used. Note that IT is a kinked convex function of p; also when the
industrial capacities are restricting the optimal solutions as in figure 4.
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Figure 6.
The graph shows the primal problem in the case of 3 products. In the illustrated case,

all potential unique optimal solutions (feasible corners) are restricted by the forest
resource plane and one of the industrial capacity planes. Hence, six possible unique
solutions exist. Since every solution is determined by two equations, only two x.'s take

J
strictly positive values in the solutions. One of the x j's is always zero.

> X,
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Figure 7.
The graph shows the forest resource restriction plane seen from "above". The feasible

region is the area restricted by A—-B-C -D-E -F - A . The six possible unique
optimal solutions correspond to those in figure 6.
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Figure 8.
If the industrial capacities decrease as represented by the shifts marked by arrows, then

the feasible region becomes the area restricted by Z1 - Z2 - Z3 - Zl' Hence, only three
possible unique optima exist. Each unique (feasible corner) optimum is restricted by
the forest resource restriction plane and two of the industrial capacity planes. Hence,
three equations give three strictly positive x.'s. The problem investigated in this paper

“is the n dimensional version of the illustrated situation : The forest resource and n-1
industrial capacities restrict the optimal solution. Every X; 1 € (1,...,n) is strictly
positive.
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Figure 9.
The graphs (a), (b) and (c) show how the shadow prices (dual variables) of the forest

resource (X)), of the industrial capacity I; (A;) and of the industrial capacity I, (A9)
are affected by the price Py- In the mathematical appendix it is proved that the
qualitative results illustrated hold also in the n dimensional case. Hence, AO is a kinked
concave function of every product price (for positive prices). A, j € (1,...,n) is a kinked
convex function of every product price. Hence, E(A((p;)) < ,\OeE(pi)) (if p; is always
positive !) and E(Aj(pi)) 2 A(E(p;)) for j € (1,...,n).

Ao
A
(a)
AO(E(P,)L _______ _
E()\o(p]))_.. _____ _;.,l.-” -
- |
! >p
R
M
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2.2. Numerical investigation

In the analytical section it was found that the expected value of the enterprise and the
expected marginal factory capacity values are higher in the presence of price risk than
in a corresponding (the same expected values of the prices) deterministic environment.
It was also found that the expected marginal value of the forest resource is higher, the
same or lower under risk than in a corresponding deterministic situation. Now, in order
to obtain more detailed answers to our questions, it is necessary to consult a
numerically specified optimization model.

The optimization problem in the numerical analysis is the following:

orrecion
e \V[ht’xt;t’q)’c’i]: e_rtn[xt:dJ,Kt(hhl,t,i] + q0-0l-19
' (9
x €X (hy,0) o
h,e(0,1,...,0) -
J *[ % * : Vjcr&
tE VW B 4% 4 (DL, Gy,

W is the expected present value, h and x are the harvest level and the industrial
production vector and t denotes time period. ¢ is the vector of known exogenous
coefficients in the linear programming subproblem, C is the state of the forest resource
and i denotes the state of the stochastic price vector (the price level index in the

specific application). X is the feasible industrial production set, which is a function of
the harvest level and other coefficients of the optimization problem. IT denotes the
linear programming subproblem which is solved for every possible combination of the
states i and C and in every period t. (This LP subproblem, II(.), is in the numerical
optimizations defined as a quantified version of the "simplified problem" presented in
the equations (6) — (8). The simplex method algorithm with the big M method, as
presented by Wagner(1975), is used in the program. The particular coefficients used are
found in the simplex matrix data set included in the end of the LP subroutine.) K,
which is a function of the harvest level, is the forest resource restriction of the LP
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v
subproblem. r denotes the rate of interest and Ay;: is the probability of transition from

state i in period t to state j in period t+1. Of course, the elements of the transition
probability matrix are derived from the stochastic process parameters. The details may
be found in the included computer program. In case the available forest resource
increases with time (new stands become sufficiently old to be harvested etc.), this may
be handled via the parameter G. In the present analysis, this option has not been used.
Stars (*) indicate optimal values. The initial forest resource state is Co- The number of
stochastic price vector states is I and TTOT denotes the number of periods in the
optimization problem.

The solution is found via recursive calculations (from TTOT and backwards). In order

*
to start the recursions, W is given the value zero for every possible state in period
TTOT+1.

In the computer program and outputs (compare the numerical appendix), the following
definitions are valid:

HMAT(C,i)  The optimal harvest (extraction) strategy matrix as a function
of the entering forest resource state C and the price state i.

%
WMAT(C,i)  The optimal present value matrix ( = W (.) ) as a function of the
entering forest resource state C and the price state i.
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Figure 10.
The optimal harvesting strategy map in the integrated forest — industry enterprise

(with one forest and two factories) as a function of the product price state (the net
price level, Py of one of the products, which is represented by a stochastic process of
the form shown in figure 2) and the entering stock state (the number of not yet
harvested forest area units). The price of the other product, Py, i8 assumed constant.
The illustrated strategy map is relevant and optimal only in period 1 in the 5 period
example which is defined in more details in the numerical appendix. Note in particular
that the optimal harvest level is a decreasing function of price in one price interval and
an increasing function of price in an other interval ! Explanation: If P; << Py (the
entering price state is 1 or 2 and the entering stock state is 1), then the probability is
very low that Py > Dy in the next period (since the autocorrelation of the stationary Py
process i8 rather high). Hence, we expect it to be better to harvest now than in the next
period. If Py < P, and the price difference is small (the entering price state is 3, 4 or 8),
then the probability is rather high that Py > Py in the next period. We select to
speculate and save the forest at least one more period.

Assumptions; r = 5%, o = 40, t = 1.

Entering
} 2 3 Alt ? 6 7 8 9 price state

" VI
1 )
. / é

Entering
stock state
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Figure 11.
The optimal harvesting strategy map. Compare figure 10.

Because of lower price variability, less i gained by "speculation" than in the case shown
in figure 10. In this case, the optimal harvest level in period 1 is higher than or equal to
the optimal level in figure 10. Assumptions; r = 5%, ¢ =10, t = 1.

Entering
? price state

R

Entering
stock state
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Figure 12.
The optimal harvesting strategy map. Compare figures 10 and 11.

Because of a higher rate of interest than in the case shown in figure 10, the present
value of instant harvesting is much higher than the expected present value of later
harvesting (ceteres paribus). Hence, the optimal harvest level is higher than or equal to
the optimal level in figure 10. Assumptions; r = 20%, ¢ = 40, t = 1.

Entering
1 2 3 4 5 6 7 8 9 pricestate

*&f"' R
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Figure 13.

*
The expected present value of the firm, W, in period 1 (in a five period analysis) as a
function of the price of product 1 (pl) in period 1 and the standard deviation of the

stochastic component of the process Py o If P, is held constant, W* is an increasing
function of o. The reason is that adaptive optimization is used: Production increases

during good years and decreases during worse years. Compare the argument based on
the Jensen inequality shown in figure 5.
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Figure 14.

*
The expected present value of the firm, W , as a function of time, t, the standard
deviation of the stochastic component in the price process Py, 0, and the size of the

remaining forest resource, C, W* is an increasing function of C. and of 0. As t
increases, the number of good price options decreases. Furthermore, as t increases, the
number of years between which the forest resource may be distributed decreases. (The
profit function is concave in the forest input each year (for positive input volumes) and

*
distribution over many years is generally optimal.) Hence, W is a decreasing function
of time.
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Figure 15.

*
The expected present value W is an increasing function of the size of the remaining
forest resource (entering stock state) and the standard deviation of the stochastic
component in the price process Py O
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Figure 16.
The expected "marginal" value (calculated via solutions based on discrete capacity

alternatives) of 10 capacity units in factory 1 (where product 1 is produced), "E(A))",
as a function of the entering stock state, ¢ and Py Clearly, the expected marginal
capacity value increases very much with the product price variability. This is
consistent with the results presented in the mathematical appendix and in figure 9(b).
Assumptions: r = 5%, t = 1.
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Figure 17.
The expected "marginal" value (calculated via solutions based on discrete resource

alternatives) of the forest resource, "Eq ()\0)“, as a function of ¢. C; is the initial state
0

(size) of the forest resource. Assumptions: Compare figure 16.

For low values of CO’ the expected marginal forest value is positively affected by o.
The optimal harvesting stops completely during low price years. Hence, the marginal
unit of the forest is used during a year with better product prices (and hence higher
forest input shadow price) than during an average year. The capacity of the factories
will never restrict the optimal solution. However, when C, is high, the effect of o on
the expected marginal forest resource value is ambiguous. The marginal forest unit will
most likely be used during a year when the marginal profitability is zero. The
probability is high that the factory capacities will restrict the optimum and make the
value of the marginal forest resource equal to zero. These results can also be found via
inspection of the analytical appendix and figure 9 a.

“EIO(}\O)“ 'Es(ho)“
A A
18 — - 20
7= — 19
2
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3. Obtained results and future options

The new approach has made it possible to model and understand the principles of
optimal planning in the integrated natural resource enterprise in the presence of
stochastic markets. Clearly, the suggested forest sector is just one possibility. The
methodology may also be used in the oil and mineral sectors. The qualitative results
discussed in connection to the graphs should hold also in such applications. It is
obvious that forests, exactly as oil and mineral resources, are "flexible" resources that
can be used in the production of many final products. The different factories or
processing plants that typically belong to the enterprise are generally less flexible. They
can be used in the production of a specific final product only. Hence, almost exactly the
same model should be relevant in those related sectors of the economy.

However, the reader should be aware that modern technology makes it possible to
construct more flexible production plants than in the past. Hence, the relevance of any
specific model should always be properly investigated. We found in figure 5 that the
stochastic market was preferable to a constant market. We could gain from variability.
This property of the enterprise was due to the fact that the natural resource was
flexible, could be used in the production of many final products. An other reason, which
was not found in figure 5 but partly in figure 14, is that most natural resources are
flexible over time. They may be used during the best (most profitable) years and
production may go down during periods with worse market conditions. Of course, these
production changes may have effects that are not desirable in other parts of the
economy. Employment will change and social problems may occur. On the other hand,
since a large fraction of the modern production plants in the process industry become
more and more automatic and less labour intensive, the employment level and
variability decrease . The author assumes that temporary production reductions in a
particular plant may be profitable even if the employment is held constant. The proper
distribution of the natural resource over time and final products should always be a
high priority problem.

Finally, the author looks forward to future applications of the presented methods in the
natural resource enterprises of reality. Some preliminary steps of action have already
been taken in that direction.
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M. Mathematical appendix

M.1. The stochastic LP forest enterprise problem in one stage

Consider the following problem:

n
maxII= ¥ pux,
j=1 33
5
3 .
S P ajxj <R
X; < Tj forje (1;.n)

The variables and parameters are defined in the main text.
Clearly, we may reformulate the problem in order to obtain a more convenient
analysis: We can get rid of the j index placed on aj if, for each j, proper values are

chosen for p. and I. and these parameters replace Bj and Ij‘ (Compare the main text
and figure 3. for more details.) The more convenient problem, which now will be
analysed is :

n
N= % px,
max j=1prJ
n
s.t. Y ax. <R
=
X; < Ij for j € (1,...,n)
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M.2. The Kuhn-Tucker conditions

The Lagrange function is :

L=Ypx.+ A.(R-aXx. Y AL =x
jp]xj.-i- 0( azjxj)+j J(J xJ)

The Kuhn-Tucker conditions are :

&L _ R - aij 20

6,\0

&L __. >0forie(1,..,n)
1 1

by

oL =p, -y~ A <0forje(l,.,n)

éxj J J

’\i >0forie (0,...,n)

xj >0forje(1,...,n)

Ai%i =0 for i € (0,...,n)

xj%_(j =0 for j € (1,...,n)

M.3. One important dual equation system

From M.2., % <0, for j € (1,...,n), one dual equation system will be defined.
X .

Clearly, we have n weak inequalities (potential linear equations) and n+1 variables
(A - An) to be determined.
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Definition

The forest resource and the industrial capacities 12,...,111 restrict the optimal solution.
I; does not restrict the optimal solution (if we introduce a slack variable, this is strictly
positive in that restriction).

Observation

Al = 0. ’\0 and )\2,...,A " should be determined from the following equation system:

@00.0] A P,
al0.0 AQ Py
a01.0 A3 = |p3
a00.1 ’\n Py

Simplify notation and let us write the system as :

[P b=

Application of Cramers rule gives A;, the shadow price (marginal value) of the forest

resource :
P 00 .0
p210.0
P30 1.0
p, 00 .1
Ny |

Laplace expansion of the involved determinants gives us the explicit result :

p
,\0 - a—l- Hence, the shadow price of the forest resource is equal to the net price divided
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by the input requirement in "marginal" production (the product x , the production of
which is not restricted by the capacity limit I, in the optimal solution). Note
particularly that ’\0 is not a function of any other price than Py

Clearly, we can derive the result:
6)0

_0_ 1
T a

ﬁpl

The marginal values, the shadow prices, of the limiting production capacities, can also
be determined via Cramers rule. We consider only A, explicitly. However, since all )‘i’
i € (2,...,n) enter the problem in the same manner, the result similar to the result
derived for A, can easily be shown to hold for Ap 1€ (2,...,n).

arplU.O

ap20.0

ap31 0

o b
A2:

o]

Laplace expansion gives the result :
Ay =Py-D;

and more generally, since all ’\i‘ 1€ (2,...,n) enter the problem in a symmetric way, we
have :

A =p;- p; forie(2,..,n)

Clearly, we may extract the following derivatives

6)\1

—=-1 for i€ (2,...,n)
§p1

45/\i

— =41 fori € (2,...,n)
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We should note that Ap i€ (2,...,n), the shadow price (the marginal value) of the
limiting production capacity L., is an increasing function of the price of product i and a
decreasing function of the price of the "marginal product" (the product X1 which is not
restricted by I, in the optimal solution). A;» 1€ (2,...,n) is not a function of the other
prices pj’ j#i

To make the exposition complete, we note that by definition :
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N.1. Illustrative example

A typical solution to the stochastic dynamic optimization problem

with a linear programming subroutine is shown below.

TTOT, R, CO, L = 5 .05 10
5000

PRPAR1. PRPARZ2, PRCOEF, PRTREND, PRSTDEV
2.5 .5 40 0 1

TRANSITION PROBABILITY MATRIX OF THE STOCHASTIC STATE INDEX

ROW = STATE(t+1), COLUMN = STATE(t)
0.054 0.007 0.004 0.000 0.000 0.000 0.000 0.000 0.000
0.243 0.090 0.054 0.007 0.004 O0.000 0.000 0.000 0.000
0.401 0.403 0.242 0.090 0.054 0.007 0.004 0.000 0.000
0.243 0.403 0.399 0.403 0.242 0.090 0.054 0.007 0.004
0.054 0.090 0.242 0.403 0.399 0.403 0.242 0.090 0.054
0.004 0.007 0.054 ©0.090 0.242 0.403 0.399 0.403 0.243
0.000 0.000 0.004 0.007 0.054 0.090 0.242 0.403 0.401
0.000 0.000 0.000 0.000 0.004 0.007 0.054 0.090 0.243
0.000 0.000 0.000 0.000 0.000 O0.000 0.004 0.007 0.054

THE PERIOD IS = §

THE OPTIMAL EXTRACTION STRATEGY MATRIX HHMAT(.) IN PERIOD 5
row = entering stock, column = stochastic state index (1 - 9)

NNRNNNNNNN-
NNNNNNNNN=-
DWLLOLWLLWLWWWN -
DO WWWWN -
DOULRRWLWWWN -
DLW WDWLWWWLN -~
WLELDLWLWWN -
WO WwWwwwNne-
DOWWLWLWWWWNm

THE EXPECTED PRESENT VALUE MATRIX WMAT(.) IN PERIOD 5
row = entering stock. column = stochastic state index

2004. 2006. 2051. 2084. 2291. 2484. 2850. 3206. 3593.
3291. 3429. 3664. 3886. 4202. 468B4. 5250. 5805. 6387.
36860. 4268. 4841. 5405. 6003. 6600, 7199. 7799. 8383.
3860. 4268. 4B41. 5405. 6003. 6600. 7100. 7799. 8383.
3860. 4268. 4841. 5405. 6003. 6600. 7199. 7799. 8383.
3860. 4268. 4B841. 5405. 6003. 6600. 7199. 7799. 8383.
3860. 4268. 4B41. 5405. 6003. 6600. 7199. 7799. 8383.
3860. 4268. 4841. 5405. 6003. 6600. 7199. 7700. 8383.
3860. 4268. 4841. 5405. 6003. 6600. 7199. 7709. 8383.
3860. 4zbb. 4bB4l. bauvb. 6OL3. 6600. iy, //8Y9. B3bg.
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THE PERIOD (S = 4

THE OPTIMAL EXTRACTION STRATEGY MATRIX HMAT(.) 1IN PERIOD 4

row = entering stock, column = stochastic state index (1 - 9)
1 1 1 0o 1t 1 1 1
1 1 1 1 1 2 2 2 9
1 1 1 1 2 2 2 2 .1
2 2 2 2 3 2 2 2 2
2 0@ 2 2 @ @8 39 3 3
2 2 3 3 3 3 3 3 13
2 2 3 3 3 3 3 3 3
2 2 3 3 3 3 3 3 13
4 2 @8 3 3 a4 3 a 3
2 2 3 3 3 3 3 3 3
THE EXPECTED PRESENT VALUE MATRIX WMAT(.) IN PERIOD 4
row = entering stock, column = stochastic atate index
2014. 2022. 2094. 2156. 2363. 2556. 2894. 3222. 3602,
3964. 3990. 4095. 4186, 4501. 4797. 5317. 5824. 6389,
5510. 5626. 5853. 6062. 6535. 6985. 7680. 8359. 9103.
6796. 7046. 7448. 7832. 8430. 9010. 9788. 10555. 11387.
7931. 8341. 8918. 0482, 10204. 10914. 11731. 12542. 13379.
8480. 9145. 99895. 10834. 11715. 12595. 13478. 14362. 15223,
8480. 9145. 9995. 10834, 11715. 12505, 13478. 14362. 15223.
8480. 9145. 9995. 10834. 11715. 12595. 13478. 14362. 15223.
8480. 9145. 9995. 10834. 11715, 12595. 13478. 14362. 15223.
B480. 9145, 9995. 10834. 11715. 12595. 13478. 14362. 15223,
THE PERIOD IS = 3
THE UPTIMAL EXTRACTION STRATEGY MATRIX HMAT(.) IN PERIOD 3
row = entering stock, column = stochastic state index (1 - Q)
L & & O 6 & F 9 o
1 1 1 1 0 1 2 2 2
1 1 1 1 3 2 2 2
1 1 1 1 2 2 2 2 2
11 1 1 3 2 2 2 2
1 &+ 1+ 2 3 3 2 2 2
2 2 2 23 a4 3 3 3
2 2 2 2 3 3 3 3 13
2 2 3 3 3 3 3 3 13
2 2 3 3 3 3 3 3 13
THE EXPECTED PRESENT VALUE MATRIX WMAT(.) IN PERIOD 3
row = entering stock, column = stochastic state index
2030. 2049. 2131. 2204. 2402. 2588. 2913. 3228. 3606.
4007. 4045. 4160. 4262, 4568. 4857. 5359. 5847. 6412.
5914. 5969. 6126. 6266, 6688. 7087. 7760. B417. 9147.
7595. 7707. 7943. 8161. 8666. 9149, 9902. 10638. 11452,
9125. 9322. 9667. 9994, 10596. 11175. 12000. 12810. 13700.
10546. 10837. 11301. 11747. 12438. 13109. 13966. 14812. 15728.
11813. 12226. 12825. 13408. 14189. 14955. 15862. 16761. 17697.
12850. 13394. 14144. 14880. 15779. 16667. 17625. 18580. 19538.
13387. 14180. 15162. 16133. 17149. 18163. 19181. 20199. 21192.
13387. 141B0. 15162. 16133. 17149. 18163. 19181. 20199. 21192,
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THE OPTIMAL EXTRACTION STRATEGY MATRIX HMAT(.) IN

row = entering stock,
i &+ 0 0 0 1 1
1 1 1 1 0 1 2
1 4 2% A O 2 2
1 11 1 4 2 2
1 1 1t &£ 2 2 2
1 1 1 4% 3 3 2
1 1 1 1 3 3 3
1 1 1 2 3 B 3
2 1 1 2 3 3 3
2 2 2 2 8 3 i

column

CWWNNNNMNNM
DWWNNNNMOMN -

PERIOD

= stochastic state index (1

THE EXPECTED PRESENT VALUE MATRIX WMAT(.)

row = entering stock,
2054, 2082. 2165.
4043. 4086 . 4205,
5976. 6035. 6194.
7851. 7930. 8125,
ub88. 9707. 9968.
11240. 11414, 11752.
12802. 13034. 13447.
14267. 145H69. 15071.
15582, 15990. 16601.
16798. 17297. 18B014.

THE PERIOD 18

1

column

2240.
4312.
6336.
8302.
10208.
12070.
13841,
15552,
17194,
18715.

2430.
4614.
G749.
8777.
10759.
12679.
14515,
16302.
18011.
19615,

2608.
4899.
7140.
9227.
11285.
13263.
15168.
17032.
18812.
20500.

IN PERIOD 2
= stochastic state index

THE OPTIMAL EXTRACTION STRATEGY MATRIX HMAT(.) IN
row = entering stock,

el el .
el el

el L e =]
[\;»-l-l-r-*»-l—n-t-og

LwWwRwNn=CCO

LWL ORNKE -~
CWw@NNNNRNN -

column

CLWONNNNNN -
CEWONNRNRNNNA

= stochastic state

THE EXPECTED PRESENT VALUE MATRIX WMAT(.)

row = entering stock,
2076. 2111. 2193.
4075. 4119. 4240.
6019. 6080. 6241,
7915. 7994, 81688.
89759, 9858. 10093.
11520. 11653. 11941.
13224, 13395. 13736.
14847. 15056. 15459,
16399. 16653. 17120.

17871.

18185.

18716,

column

2268.
4348.
6385.
8363.
10308.
12209.
14057.
15842,
17565.
19231.

2924. 3232.

5309. 5865.

7801. 8445.

9966. 10688.

12098. 12894.
14099. 14919.
160349. 16897.
17945. 18848.
19758. 20687.
21488, 22471.
PERI10D

index (1

IN PERIOD 1

= stochastic state index
24%(0). 2622. 2933. 3235.
4646, 49208. 5409. 5877.
67932. 7176. 7828. B462.
8831. 9276. 10008. 10723.
10840. 11346. 12151. 12939.
12784. 13334. 14163. 14975.
14681. 15280. 16139. 16982.
16525. 17185. 18076. 18953.
18304. 19021. 19936. 20840.
20020. 20789. 21732. 22665.

3609.

6423.

9168.
11492,
13775.
15827.
17833.
19803.
21670.
23469.

1
- 9)

3610.

6430.

9181.
11522,
13815.
15882.
17918.
19800.
21800.
23643.
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10 DEFDBL. A-H

20 REM prograom STDYNLP

30 REH STOCHASTIC DYNAMIC PROGRAHMHING WITIH A LINEAR PRUOGRAHMING SUBROUT INE
A0 REM BASED ON THE SIMPLEX ALGORITHM WITH AND THE BIG-N HETHOD

L0 REM LOHMANDEW PETER 8Y-03-08

GO LPWINT CHR$¢27);"E"

IO LIPRINT CHR$(2Z7)y;"G"

HO HEM liblllnt'-nllllllllllIunnlnlilnrlnnlilnlllinlllljnllunnlnlllolllllull
90 DIHK SKU(SO).A(SO.&OI.NXIH!!SOJ.VK(SOJ

100 DINX UHAT(B.im)).TRH;\T(!I.BJ.FIH.\T{Q.lou:.lm.«'r:ea.luo:

110 DIN FGEVIII),UHATZIH.|00].!l20)

120 KEH Illl|III!l'l'Illllllllllll]l.l"ll.lI-IIhIlllIlllllllllllllﬂllllﬂllll
130 REM GENERAL PARAMETERS CINPUT IN A LATER STAGLE)

140 KEH tllcl|luirllllllulnnllnlnlnllu||-|ll||lnulunnnnnuun----nnnu--nunqnn
150 UUTO= 0

160 ouUT2 o

170 OUTA 1

100 TT™OT = 5

190 B = .05

200 0 = 10

210 1, - HD00

A20 LPRINT®TTOT, W, o, Lo+ ", TTOT, R, CO,I.

230 REM --l!tnillnlii||lll-lltlnlulonuliullllllullnll-uuI-unlllllllnlu'llln
240 REM PARAMETERS OF THE STOCHASTIC STATE PROCESS (INPUT IN A LATER STAGE)
250 HEM "'lll'llHI!IIIIllllll!lllllllllllliIil|llllllllllillnilulnll.l.ll.l
260 PRPAR2 = .5

270 PRPARL = S« (1-PRPAR2)

280 PRSTDEV=1

280 PRTREND = o

300 PRCOEF = 40

310 LPRINT® =

320 LPRINT"PRPAR1, PRPARZ, PRCOEF, FRTREND, PRSTDEV"™

330 LPRINT PRPARY; PRPAR2: PRCOEF; PRTREND; PRSTDEV

340 LPRINT"™ "

350 REM IIUlIII.Illlllll'llllllinlll-llb!ltlllll!l|IIIIII!lllllllliﬂlilllllll
360 REM CALCULATION OF THE STOCHASTIC STATE INDEX TRANSITION PROBABILITY MATRIX
A70 REH lII.llIIll!lll!llIIlIllillllillllllll]II-llilllllnlllilllll’lllllllll
A80 FOR 1Dl = 1 TO 11

300 DEV = DI - 1

400 FDEV(IDI) = lf(2l3.141593lPRSTDEV‘2)‘.SIEXP(—DE?“Z/Z/PRSTDEV‘Z)

410 NEXT (DI

420 FOR PO = 1 TO 8

430 EP = PRPAR1 + PRPARZ®PO

440 FOR P1 = 1 TD 9

450 DEV = ABS(P1-EP)

460 IDI = DEV + 1

470 TRMAT(P1,PO) = FDEV(IDI)

480 NEXT Pi

490 REM I!IIIIullll!lll!lI!IIIIllhllllunluh!l!nllllnl|I|lllutl|-l!lllllllill
500 REM CORRECTION FOR TRUNCATION, REFLECTING BARRIERS AND DISCRETE SPACE
510 REM uullquln"u"---uuuunuunuuu.---u"unu"uu--nu
520 PROBTOT = 0O

530 FOR P1 = 1 TO 9

540 PROBTOT = PROBTOT + TRMAT(P1, PO)

550 NEXT P1

560 FOR P1L = 1 TD ©

570 TRMAT(P1,PO) = TRHAT(P1,PO)/PROBTOT

580 NEXT Pi

500 NEXT PO

600 LPRINT"TRANSITION PROBABILITY HATRIX OF THE STOCHASTIC STATE INDEX"™

610 LPRINT"ROW = STATE(t+1), COLUMN = STATE(L)"

620 FOR P1 = 1 TO'9

630 FOR PO = { TO O

640 X(PO) = TRMAT(P1,P0)

650 NEXT PO

660 LPRINT USING'I!I.lll';xti};!(Z)lxiai|l(4};ltﬁ);1(ﬂ!:X(?I:IEBJ:IID)

670 NEXT P1

680 REM lnl--unclunuun---n-.llllunnil|lnillqnllIuilIuiIlloullnll-nulllllllll
690 REM DEFINITION OF WHATZ2(P,V) (= O FOR ALL P,V) IN THE FINAL PERIOD

700 REM llnllnuunsqoullullIllillliliusuc.llulnl|ulnlunl|llui-lnliilullllllll
710 FOR P = 1 TO 9

720 FOR V = 1 TO coO

730 WHMAT2(P,V) = 0O

740 NEXT V

750 NEXT P

" ow



760
770
T80
780
800
810
820
830
840
850
860
870
880
880
800
210
az0
230
040
250
860
a7o
280
9890

1000
1010
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REH lllﬂlIIIIIIIII.IIIII!II.IIlll!ll--llnI-lIlIﬂllltl.lllllllllllllllll!l
REH STOCHASTIC DYNAHIC PROGRAHMING VIA THE BACKWARD ALGORITHH

REM IIIIlIlIlIIll'IIllRlllIIIIIIlIllll!llllllIlllllll-llllnunlillllll'lll
FOR § = 1 TO TTOT

T =TTOT - 5 + 1

LPRINT® =

LPRINT®"THE PERIOD 15 = T

LEHINT® =

HEM ilnnn-nu---nnnuulnuunn--uunllln-un--n-il'lnnnl|-|u|nnunuu-|lll|llllln

REM OPTIMIZATION OF THE DECISION VECTOR AT TIHE t VIA LINEAR PROGRAHMING
REM FOR LEACH POSSIBLE STOCHASTIC INDEX STATE AND FOR EACH POSSIBLE STATE
REM OF THE RESOURCE AVAILABILITY

REH lluulluilclnlnun|uiu|a|nl-|ln-|n|u----.-unu---;unu---nn-unnulillninll
REM

FOR PIND = 1 TO 0

FOR VOLIN = 1 TD CO

PRHAX = O

HOPT = ©

FOR IH = 0 TO VOLIN

REM -an-:-n-.n.---nuu-----|lliuluuill:uiunullnull||itl¢li|ll|llnu||!lnlll
REM EQUATION OF MOTION

REM lllllhhli.hll!lilll.l!ll'lllﬂllllllllIIlllli.lIl’l.llllul'l!ll!lllll!
INGROWTH = 0

VOLOUT = VOLIN - [H + [NGROWTH

W = WHAT2(PIND, VOLOUT)

REM iulcnuuunl-nlllnulniuhtnnunnln---l--nlnuulnuu|nla|u¢||||unn||.lllllll

1020 REM THE LINEAR PROGRAMMING SUBROUTINE IS CALLED AND THE OPTIMUM 1S FOUND
1030 REM lllnillInlll-u-ulnnuillsllulniiuiw-llluiulunllunalnnlunnnlnqunnuuilul

1040

GOSUB 1680

1050 PR = OBJLP + EXP(-R)wW

1060
1070

IF PR > PRHAX THEN HOPT = |H
IF PR > PRHAX THEN PRHAX = PR

1080 NEXT IH
1090 FIHAT(PIND,VOLIN) = PRMAX

1100
1110
1120
1130
1140
1150
1160
1170

HMAT(PIND, VOLIN) = HOPT

NEXT VOLIN

NEXT FIND

LPRINT" =

LPRINT"THE OPTIMAL EXTRACTION STRATEGY MATRIX HMAT(.) IN PERIOD “;T
LPRINT"row = entering stock, column = stochastic state Index (1 - 9)%
LPRINT™ =

FOR V = 1 TO CoO

1180 FOR P = 1 TD 9

1190
1200

X(P) = HHMAT(P, V)
NEXT P

1210 LPRINT USING'III‘;X(!};X(2);xtal:X(‘);KISD;X(GI:XITI:X(B);X(B)

1220
1230
1240
1250
1260

NEXT Vv

REM llllnlllllll-lllll-uuilnnll!l'ulqui|liull!nulllnuillll‘lilll!lIOIIIII
REM DETERHINATION OF THE EXPECTED VALUE HATRIX, NAMELY WHAT(P, V)

REM IIIIIlOiIIIII-lIIIIIIIIIIII.III!IIl.IIIIIIII'IIlllll.‘llllll'.ll'l‘ll
FOR PO = | TO 9

1270 FOR VOLIN = 1 TO CoO

1280
1290

WHAT(PO,VOLIN) = O
FOR PL = | TO 8

1300 WHAT(PO,VOLIN) = WHAT(PO,VOLIN) + TRHAT(P1,PO)RFIMAT(P1, VOLIN)

1310
1320
1330
1340
labu

NEXT FP1

NEXT VOLIN

NEXT PO

REM lIIIIllI.lllIIIIIIlI'lIIIIII.II!III.IIIllIll'lll'llillllll'llllllll"
REM PRINTOUT Ul Thk LXFECTEDL PHRESENT VALUE RATHIX, NARELY WHAT(F,V)

1360 REM ||li|||Illll-l-llnll-lullulu-n'nu-nlllilllnlllnIlllllllulllllllllllll

1370
1380

LPRINT" =
LERINT®"THE EXPECTED PRESENT VALUE MATRIX WHATC(.) IN PERIOD ";T

1390 LPRINT"row = enlering #lock, column = stochustic state index"™
1400 LPRINT™ =

1410 FUR V = 1 TO CO

1420 FUR P = 1 TO 9

1430

X(P) = WHMAT(P,V)

1440 NEXT P

1450
146:4)

LI'HINT USING'!IIIII.":X(!I:X[2l:Il.’!);x&ﬂ);xtﬁl;XtB] XTI X8I ; X¢B)
NEXT V

1470 REM -I-II-I-I-I--nt----oncn-uh---nnn---nn-u--nnu||||n|-|||||u.-r.lliunlnl

1480
1440)
1500
1510
1520
1530
1540
1550
1560
1570
1500
1500
1600
1610

REM BEFORE A CHANGEE IN PERIUOD, WE LET WHAT(P,V) REPLACE WHAT2(P. V) !
KM l'IIIllllIIIIIlIllII.Illl!lltlllllllllllniIIllIIIIII.IIlIIIIIIIIIIlI-
REM INPUT®GO ON = 1 7".G

REM IF G<1 THEN STOP

For 1 = 1 TO 9

FOR V = 1 TO CO

WHAT2(I', V) = WMAT(P,V)

NEXT V

NEXT P

NEXT S

sSToP

REM

REM

FND



1600
1690
1700
1710
172

1430
1740
1750
1 /60
1770
17080
1700
1300
1010
1820
1030
1840
1850
1860
1070
1800
1690
1900
1910
1920
1930
1940
1950
1960
1970
1080
1980
2000
2010
2020
2030
2040
2050
2060
2070
2080
2080
2100
2110
2120
2130
2140
2150
2160
2170
2180
2180
2200
2210
2220
2230
2240
2250
2260
2270
2280
2280
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
24980
2500
2510
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HFH L L R N R R R R R SRR R R SRS R S T

REH SURROUTINE FOR LINFAR PROGRAHHING VIA TUHE SIHPLEX HETHOD WITIH BIG-M.

L L T I I I I mmnm

READ HO,NO

FOR 1 % 1 TO HO i
FOrR J = 1 TO NO

ALl Jd) = 0

NEXT J

NEXT |

READ HM.N, AVALUE

IF H:0 THEN GUTO 10310

AC(H.N) = AVALUE

GaTn 1770

HESTORE

REM 0o mn s s mm e im s n W NN NN NN Y N BN NN NN RSN NN NN AN NN NN NN NN NN NR AN RN
REM NFW PARAHETERS ENTER FRUM THE MAIN PROGRAM TO THE SIMPLEX TABLE

Lo R T RS RN R R R Rt m
Atl, 1) = - 100 - (PIND-5)ePRCOEF + TWPRTREND

AC2,6) =1H*20

IF OUTd = 1 THEN PRINT"ACL, 1) = ";A(1,1);" ACZ,G) = ":A(2,6)

IF OUTO= O THEN GOTO 1930

PRINT"THE INITIAL SIMPLEX TABLE I15:"

FOR M = 1 TO MO

PRINT USING "WRER. BRE™;ACH, 1);ACH, 2) ;A(M,3);A(M,A);A(M,5);ACH,6)

NEXT H
FOR I = 1 TO SO
NXI1EX(1) = O
WNEXT 1

DIFP=,000001

DIFH=-,000001

REM N umumen s un e n e m e n a mmnm i M nan NN NN N RN N NN N A RN NN AN NN NN AN NN NN NN NN
REHM FORCE THE ARTIFICIAL VARIABLES INTO THE SYSTEM SOLUTION

L R L L m
FOR NH = 1 TO NO

1B=0

AKOST=A(1,NH)

IFC(AKOST>8999.9 AND AKOST<1000.1) THEN IB=t

IFt1B=0)THEN 2150

H=0

FOR MX=1 TO HO

AB=A{MX, 6 NH)

IF(AB>. GO0 AND AB<1.001) THEN M=MX

NEXT HX

IF(H=0) THEN PRINT"ART.VAR. MISSING IN EQUATION " iNH

FOR N = 1 TO NO

A(1,N}) = A(1,N) - A(HM,N)*1000

NEXT N

NEXT NH

REM 0 m 0 m om0 oo 0 00 000000000000 000000000000 00 0
REM LOUK FOR THE MOST NEGATIVE COEF. IN THE OBJECTIVE FUNCTION

REH ®o s nup s e fr s d iy Ay NN N NN NN NN AN AN ANE N NRR NN
NHAX = NO - 1

IF OUTO= O THEN GOTO 2240

FOR H = 1 TO MO

PRINT USiNG'IIIGI.lI.’;A(H.IJ:l(H,ZJ:llH,S);ﬁ(ﬂ.4l;hIH.5);&lﬁ.si

NEXT M

NA=0

AK = -,000001

FOR N = § TO NHAX

AEV = A(1,N)

IF AEV>AK THEN 2310

NA=N

AK=AEV

NEXT N

IF NA=QO THEN 2720

REH Semuuus e ad e nnu s s i i S n N m NN R AN AR NN RS NN RR RN
REH WHAT 15 THE HAXIMUHM VALUE WVHICH X1 CAN TAKE 7

REM #6000 oo s s Ssdsrsr e nnsn s s s NN NN R
AKOEF = 0

AKVOT = 100000

MA = 0

FOR KKH = 2 TO MO

EVKOEF = A(KKM,NA)

AVOL = A(KKM,NO)

IF (EVKOEF>DIFH AND EVKOEF<DIFP) THEN 2490

IF (EVKDEF<0) THEN 2480

EVKVOT = AVOL/EVKOEF

IFCEVKVOT>AKVOT)THEN 2480

AKVOT = EVKVOT

AKOEF = EVKOEF

HA = KKH

XXX=1

NEXT KKM

NXTEX({NA)Y = HMA



b b
2530
540
WhhO
“hE0
2570
2580
2500
2600
2610
2620
SEIO
Than
2650
20660
270
2680
2600
2700
2710
2720
2730
2740
2750
2760
2170
2780
2740
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
29800
2010
2920
2930
2940
2950
2960
2870
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3000
3100
3110
3120

51

REM L L R R R N N R R R R R R R R R I I
REH ROW DIVISION WIHICH IMPLIES THAT Xi BECOMES Xi = 1

REEM L L N N R SRR SRR R R R R I I I I I ™ m
FOR N = 1 TO NO

ALHA,N?» = A(MA,N)/AKUEF

NEXT N
RF_H.IIIIIIIIII'II!II!ﬂllIlllllllhl'l.lllllllllllllllllhllllI!IIIIII.IIIII
KLEM HEDUCTION OF EACH ROW

L R L S R R R R I I I I I I m ™ ™m
FOR H = 1 TD MO

FAKTOR = A(H,NA)

IFIM=MA)THEN FAKTOR = O

FOR N = 1 TO NO

ATH,N} = ACH,N) - FAKTOR » A(MA,N)

NEXT N .

NEXT H

GUOTO 2190

REM 888 0000000000000 000NN RN E RN RN
RERM FEED THE RESULTS INTD THE PRIMAL RESULT VECTOR FOR X, VX(NX)

L L L N R R R LRI
FOR NHX = 1 TO NMAX

IKL) = O

AKOLL = O

FOR HEV = 1 T0 MO

TAL = A(HEV,NX)

AKOLL = AKOLL + TAL»TAL

IF(TAL>.9988 AND TAL<1.0001) THEN IK0O = MEV

NEKT MV

IF (AKULL>1.0001) THEN 1KO = 0

IF CIKD > 1)THEN VX(NX) = A(IKO,NO)

NEXT NX

REH lllliIII'l.lllllIIIlIlIII!III'IIIIIIIIIllIIIIIIIIIIIIIIIIIQII'I.I..I
REH FEED THE RESULTS INTO THE DUAL RESULT VECTOR (SHADOW PRICES) SKU(NX)
REHM lluuniul-llnlllplulilIlluclilnnllillllllllllll!lll!lllllllllIlllllll
FOR NX = 1§ TO NMAX

SKUCNX) = A(1,NX)

NEXT NX

IF(OUTO= O AND DUT2 = 0) THEN GOTO 2820

PRINT"PRIMAL RESULT VECTDR':VX{!J:Vl(2):v!(3!:UX!AI;VXtS)

PRINT"DUAL RESULT VECTOR';SKU(I)iSKU(Zl:SKUIBI;SKU(Q};SKU(SI

IF OUT3 = 1 THEN PRINT"THE OPTIMAL OBJECTIVE FUNCTION VALUE = ";A(1,NO)
OBJLP = ACL,NO)

RETURN

REM llllllllillﬂlliilllll'lﬂ.l'l"‘llll'l.llilIlllllIll.lll.lll'llll...l
REH END OF THE SIHMPLEX SUBROUTINE

REH b LR R R R N R R R R R R R RNt NI
REM

REM

REH

REM l!llIIIIIIQIIIIIIIIIIIll‘lllilll'llllllllll.llll.llllll‘lhllll'lllll
REM SIMPLEX HATRIX DATA SET

REM R R R R R R R R Il mm
DATA 004,008

DATA 001,001,-100,001,002,-100

DATA 002,001.001,002.002.001.002.003,001.002.006.050

DATA 003,001,001.003.004.001,003.006.030

DATA DO“,OOZ.OO!.004,005.001.004,005.030

DATA 0,0,0

REM lllInuunlluluiiiillnnnilli-lInlnll|lllluiilill!hnlilil!uillllllllill
REH END OF SIHMPLEX MATRIX DATA SET

REM IIIIIl.lllll'lIIIlllllI.lIIIIII'lIIIllll’lllllllllli.ﬂlllllllllllll'



