Methodology for optimization of coordinated forestry, bioenergy and infrastructure investments with focus on Russian Federation

Методология оптимизации координированных инвестиции в лесное хозяйство, биоэнергетику и инфраструктуры на примере РФ

> Peter Lohmander Professor Dr., SUAS, Umea, SE-90183, Sweden Peter@Lohmander.com

FORESTS OF EURASIA - PODMOSKOVNY VECHERA Moscow State Forest University

September 19 - 25, 2010

1

Professor Peter Lohmander	Профессор Петер Ломандер
Department of Forest Economics,	Шведский университет
Faculty of Forest Science,	сельского хозяйства
Swedish University of	(SLU),
Agricultural Sciences (SLU),	90183 Умео, Швеция
SE – 901 83 Umea, Sweden	
peter.lohmander@sekon.slu.se peter@lohmander.com plohmander@hotmail.com	peter.lohmander@sekon.slu.se peter@lohmander.com plohmander@hotmail.com
proninancer@notinan.com	pioninanaer@notinan.com
Web: <u>http://www.Lohmander.com</u>	Web: http://www.Lohmander.com
	1

There are very good options to strongly increase the industrial utilization of raw materials from the forests, such as stem wood and other assortments, irrespective of how these assortments are distributed between saw mills, pulp mills and companies in the energy industry.	Имеются хорошее перспективы значительного увеличения объемов лесосырья разного ассортимента, например круглого леса. Независимо от распределения между лесопилками, ЦБК и энергетическими компаниями. Изучаются общие пути оптимизации скоординированного расширения мощностей поставщиков лесосырья и биоэнергии и инфроструктуры. Рассматриваются альтернативные динамические модели.
--	--

The total economic value, the present value of all activities in forestry, the forest products industry and the energy industry, increases strongly if harvesting and capacity expansion develop in the ways derived and suggested by the optimization models.	Общая экономическая стоимость, текущая дисконтированная стоимость всех операций и лесном хозяйстве, затрать на производство лесопродуктов и энергии значительно увеличиваются если вырубка и расширение объемов сырья производятся в рамках предлагаемых оптимизационных моделей.
	5

Furthermore, the complex problems of the global system with green house gases and global warming and the level of the carbon stock in the forests, has become a dominating topic in all media and conferences during the latest years. With increasing utilization of the production potential of the forests, the forests can capture more CO2 from the atmosphere and we may solve the global warming problem. When we harvest a forest and use the timber to build wooden houses, bridges and other constructions, the carbon that was originally captured by and stored in the forest is moved to the constructions.

Кроме того за последние годы, доминирующей темой во всех СМИ и на конференциях стали комплексные проблемы связанные с: глобальным потеплением, парниковым эффектом и уровнем запаса углерода в лесах. При оптимизации использования промышленных лесов, леса способны удерживать больше СО2 и таким образом мы можем решить проблему глобального потепления. Когда мы вырубаем лес и используем пиломатериалы. для постройки деревянных домов, мостов и других конструкций, накопленный в древесине углерод остается в конструкциях.

6

8

IMPORTANT OBSERVATIONS

EU has the target of 20% renewable energy in the year 2020. <u>http://ec.europa.eu/energy/index_en.htm</u>

In Russian Federation, the potential sustainable forest harvesting level is many times higher than present harvesting.

These biomass resources may be used as a sustainable source of energy in central Europe.

CENTRAL QUESTIONS: • Where can Europe find 2 563 TWh of "new" renewable energy ? • Would it be profitable to deliver this renewable energy to Europe?

Forest area (million hectares):
 Sweden: 23.000 (SVO, 2009) Russian Federation: 808.790 (FAO, 2005) Canada: non res. = 260.643. (Canfi 2001)
17

Forest stocl me	k (milli etres):	ion cubic
Sweden:	3 155	(SVO, 2008)
Russian Federation:	80 479	(FAO, 2005)
	29 384	(Canfi 2001)
Canada:	20 00-	

n	Industrial wood			Industrial wood				
Region/country	coniferous sp.			non-coniferous sp.				
	Total	Sawlogs and veneer	Pulsand	Totali	Sawlogs and veneer	Pulnunad	Fuelwood and charcoal	Total
	million m3 fub	1003	rmp-wooa	10000	1093	Fulpwood	charcoar	Toundwoo
Europe	385,5	234,7	129,9	119,1	52,4	57,7	152,5	657,
Sweden	59,9	32,1	27,6	3,2	0,2	2,7	5,9	69,
Russian Federation	101,2	60,5	28,6	35,5	17,7	14,1	44,7	181,
Africa	9,3	4,7	4,1	61,0	21,8	12,3	637,6	707,
Asia	93,8	57,4	11,1	149,5	94,2	23,9	753,7	997,
Canada	125,0	116,0	8,6	27,7	13,2	11,9	2,9	155,
USA	225,0	137,2	83,4	111,7	51,7	56,1	43,6	380,
Latin America	86,3	48,5	35,0	110,5	41,0	61,4	285,9	482,
Oceania	34,7	18,7	8,0	17,6	7,7	9,6	15,9	68,
Entire world	960	617	280	597	282	233	1 892	3 44
1 Inki, övngt rundvirke (pålar, stolpa etc. Källa: FAOSTAT Databas Source: F	ar, gruvstolpar m.m.). Inclu	des other industria	i roundwood suci	has poles, pilprops, posts				

	Export				Import								
Region/country	Coniferous species	Non-coniferous species		Chips, particles & wood residues	Coniferous species	Non-coni species	ferous	Chips, particles & wood residues					
		Tropical	Other			Tropical	Other						
	1 000 m3f ub												
			25				22						
Europe	50 657	61	241	25 536	31 953	865	786	29 532					
Sweden	2 334	0	15 11	854	3 377	3	3 402	2 710					
Russian Fed.	25 034	0	750	3 081	286	0	0	1					
Africa	202	2 912	301	3 393	280	132	342 13	19					
Asia	454	7 446	60	4 509	32 158	9 936	131	27 469					
North America	10 379	7	2 652	9 121	4 207	6	1 826	4 879					
Canada	2 659	5	174	2 775	3 035	1	1 573	3 891					
USA	7 7 2 0	2	2 478	6 346	1 171	5	253	988					
Latin America	327	329	3 965	9 325	353	14	84	253					
Oceania	7 587	2 724	1184	10 190	9	2	6						
			33				38						
Entire world	69 607	13 479	403	62 075	68 961	10 954	175	62 159					

	Import			Export		
Year	Quantity	Value (Cif)	Average price	Quantity	Value (Fob)	Average price
	1000	1 000 SEK	SEK/m ³ f ub	1000 m² f ub	1 000 SEK	SEK/m³ f ub
2000	111	156 592	473	miuo	53 20.260	280
2000	366	190 511	520	1	18 51 781	437
2002	377	203 896	541	1	37 63.083	459
2003	567	363 394	641		81 48 051	597
2004	736	397 918	541	1	91 91 067	478
2005	805	411 335	511	3	11 189 809	609
2006	1 018	644 689	633	2	80 202 666	723
2007	871	600 619	689	2	34 153 389	656
2008	1 016	731 449	720	2	14 193 696	905
2009 ²						
Wood residues ³	601	276 201	459		19 20 188	1 063
Sawdust ³	47	14 941	317		52 61 141	1 176
Pellets ³	939	727 016	775	1	43 130 666	912
 Nettoimport markenst med m 2 Uppgifter skredovisas fr information se kapiteltexter Figuras separated in 2009. relevant. For further inform 	izustecken. Net trade Ån 2009. Tidigare u A Earlier years the fi nation see English s	(minu: sign indicates net imp ppgifter ingick i träavfall igures were incl into woo ummary	port) 1 m.m. Fr.o.m. 2009 är jän ed residues etc. From 200	nförelse med tidigare i 9 onward, comparison	ir ej relevant. För j with previous yea	ytterligare rs are not
 Triavfall/wood residues avo 	er refers to EN/CN sta	t nr 44013080; sågspån/ zaw	duat avone refer to KN/CN st	at nr 44013040; pelleter a	vser refer to stat ur 4	4013020
Källa: SCB, Utrikeshandel, Sve Source: "Foreien Trade", Static	eriges statistiska datab: tics Swaden: Swaden's	iser Landistical	Exchange r	ate: Approxi	mately 10	SEK/EUF

Tabell 1 Trädbrän	sle, kı	onor/	MWh	fritt förl	brukare,	löpande j	priser e	xklusive	skatt.) Sveriges att	ciella statistik
Period	2006	2007	2008	2009				2009:2	2009:3	2009:4	2010:1
				Hela Sverige	Norra ^{1,2}	Mellersta ^{1,3}	Södra ^{1,4}				
Förädlade trädbränslen: (briketter & pellets)	Pel	lets el	c.								31 EURO
Värmeverk	211	244	271	298	316	308	290	282	305	309	310 ^P
Skogsflis:	For	est ch	nips								20 EURO
Industri	119	128	146	176	-1	-1	-1	177	188	186	199 ^P
Värmeverk	146	158	167	181	187	186	171	174	178	195	199 ^P
Biprodukter:											
Industri	112	153	160	172	-1	-1	-1	179	167	189	184 ^P
Värmeverk	128	134	157	170	178	172	155	167	166	180	178 ^P
Returträ:											
Värmeverk	78	64	69	78	55	77	85	70	80	92	101 ^P
 Den regionala redovisningen o och BD lån. 3) AB, C, D, E, S, T. 	mfattar e U, W os	ndast vä :h X län.	rmeverk 4) Övrig	en. Observe a landet. 5	ra att mede Alltför få	elprisema i reg uppgifter i un	ionema är derlaget fö	mera osāki r att redovi	a än medel a. R) Uppj	priset för n ziften har r	ket. 2) Y, Z, A eviderats sedar

Forest harvest (million cubic metres) (FAO, 2005):

- Sweden: 92.8 (Roundwood + pulpwood)
- Russian Federation: 236 (Roundwood + pulpwood)
- Canada: 223.5 (Industrial roundwood 219.5 + woodfuel 4)

31

Growth potential: Russian site index tables show that the potential sustainable growth and harvest are several times higher than the reported growth.

- Total growth potential 2919 million cubic metres on 645 million hectares (the best soils) gives 4.53 m3/ha.
- Total growth potential 2919 million cubic metres per 809 million hectares (total forest area) gives 3.608 m3/ha.
- <u>http://www.lohmander.com/RuMa09/Lohmander_Presentation.ppt</u>
 <u>http://www.liasa.ac.at/Research/FOR/forest_cdrom/english/for_fund_en.html</u>

			Distrib	ition of f	orests b	y relativ	e stockir	ıg and si	ite index	, 10 ³ ha						Table S
Sobjects of BE	Total								Site inde	~						
manue of main	1004		I and high-			200e Index									a and loom	
groupe or main	ana		1 803 2020	a –		111	Dista	antine of the		and the st	- Aliza				a azat 20199	u .
score tomang	hu forest	10.02	02.05	04.02	10.02	02.05	0.4.02	10.02	02.05	0.4 0.2	10.02	02.05	04.02	10.02	02.05	04.02
aprena	semiation	1.0-0.0	0.110.5	0.4-0.5	1.0-0.0	0.7-0.2	0.4-0.5	1.0.0.0	0.7-0.7	0.4-0.5	1.0.0.0	0.710.7	0.4-0.5	1.0-0.0	0.7*0.5	0.4.0.5
Russian Federatio	1 regranda			_									_		_	
Covifront	504315.8	9194.3	19437.2	2221.2	12405.5	42261.6	12629.7	16322.9	86202.6	31586.3	13148.0	97777.9	518968	5193.6	48686.2	493461
Hard decideone	12469.5	434.8	1236.4	122.2	456.0	2172.1	568.2	995 9	2213.4	1067.2	216.1	3467.7	1474.2	294.3	1541.1	200
Soft decidnone	123182.1	15071.7	21250.9	2549.0	10422.3	23849.2	4818.0	6086.1	16837.1	3209.9	2524.0	3650.1	1941.1	948.9	3746.3	1202.0
European Ural par	t of the Russian	Federatio		1047,0	10111.35	#00000,	401070	00000,1	10001,1	5100.5	000400	10000	1,001,0	10051	0.000	1101,0
Coniferent	88090.6	6042.9	10183.0	543.3	3608.9	8719.6	624.5	3256.1	13493.9	1204.1	1625.1	20262.2	3576.5	452.8	9368.7	4929.0
Hard decidnone	5106.5	420.6	1155.7	98.0	340.0	1157.1	110.8	194.6	045.0	00.0	48.5	201.7	19.2	22.3	\$2.1	10.5
Soft decidnone	47579.8	12041.6	12799.1	561.1	4634.5	7013.1	498.1	1892.0	2363.7	207.1	560.1	1397.5	319.8	212.7	1131.3	818.1
Asian part of the B	ussian Federat	en														
Coniferous	416225.2	3151.4	9254.2	2178.4	8796.6	38542.0	11955.2	13071.8	73208.7	30252.2	11522.9	77515.7	48320.3	4740.8	39297.5	44417.5
Hard deciduous	12363.0	14.2	80.7	29.7	107.1	820.0	457,4	210.7	1867.5	976.3	667.6	3176.0	1436.5	272.0	1458.0	789.3
Soft deriduous	75607.3	3030.1	8451.8	1987.9	5842.8	16836.6	4319.9	4194.1	13473.4	3372.8	1963.9	6252.6	1621.3	756.2	2615.0	888.9
Forest regions of t	he Russian Fed	ration														
Coniferous	73291.0	2448,8	3843,9	226.9	2893,9	6919.2	557,0	3034,4	12648,7	1275,0	1559.2	19828,8	3523.5	428,1	9222.9	4880,1
Hard deciduous	476,5	3,4	14,5	1,0	14,2	107,6	15,1	13,2	216,3	28,5	1,5	45,2	9,2	0,0	4,6	2.3
Soft deciduous	30708,0	7084,0	5322,5	258,4	3784,6	4928,0	346,3	1734,5	2834,7	262,9	528,4	1236,8	280,7	207,5	1088,9	809,8
Non-chernozem zo	ne of the Russi	an Federa	tion													
Coniferons	84079,0	4864,6	8502,2	645,3	3412,3	8222,5	611,6	3205,8	13338,0	1307,1	1616,1	20222,5	3569,1	452,2	9382,0	4927,1
Hard deciduous	615,2	81,5	311,5	23,6	22,9	146,2	14,3	2,1	11,8	0,7	0,0	0,6	0,0	0,0	0,0	0,0
Soft decidnonal	39133,9	10389,0	10408,1	395,0	3897,7	4892,5	290,6	1755,1	2654,6	239,5	542,2	1273,0	282,6	208,2	1094,8	811,0
Baikal lake basin																
Coaiferous	11231,0	15,5	54,6	10,5	258,7	1274,8	263,3	686,2	4492,9	1111,0	205,6	1669,3	611,7	43,4	359,3	174,2
Soft deciduous	2083,5	12,9	21,0	2,1	180,0	447,7	66,9	239,3	697,8	111,2	55,0	162,6	35,3	7,9	32,8	11,0
Shoreline around	Baikal lake															
Coniferous	1683,6	5,2	13,5	2,7	65,6	218,4	41,0	122,2	483,4	112,3	54,2	248,9	97,0	20,8	128,2	70,2
Soft devidences	411,9	6,3	8,1	0,7	49,0	80,8	9,3	49,2	86,6	16,2	19,0	40,2	11,5	5,1	20,9	9,0

Russian site index tables give:

- Total growth potential 2919 million cubic metres on 645 million hectares (the best soils) gives 4.53 m3/ha.
- Total growth potential 2919 million cubic metres per 809 million hectares (total forest area) gives 3.608 m3/ha.
- <u>http://www.lohmander.com/Ru/Ma09/Lohmander_Presentation.ppt</u>
 http://www.liasa.ac.at/Research/FOR/forest_cdrom/english/for_fund_en.html

ļ	Cal	culati	oň d	of th	e lo	nắ r	uns	sust	aina	ble	pro	důc	tiŏn	leve	el°	Ρ	Q Table 9
			• •														1 10000 7
				Distribu	ition of f	orests b	y relativ	e stocki	ng and si	ite index	, 10° ha						
H	Column 200	7-1-3								the is to							
ł	Subjects of FUP,	1008		I used highly						1.12	1	_	v			to and have	
ł	Brode or man	area d		1.000.000				Printed	ation of the		and the state	a china				6 683 8799	
ł	toper somang	hu forst	10.02	07.05	04.02	10.02	02.05	04.02	10.02	02.05	04.02	10.02	02.05	04.02	10.02	07.05	04.02
t	specas	ventation	1.0 - 0.0	0.7*0.5	0.4-0.5	10-00	0.7*0.2	0.4-0.5	10.00	0.7*0.2	0.4-0.3	1.0.0.0	0.110.2	0.410.3	1.0-0.0	0.1-0.5	0.4-0.3
3	Cussian Federation	regression									-				-		
f	Conferous	504315,8	9194,3	19437,2	2721,7	12405,5	47263,6	12629,7	16327,9	86702,6	31586,3	13148,0	97777,9	51896,8	5193,6	48686,2	49346,5
b	lard deciduous	17469,5	434,8	1236,4	127,7	456,0	2177,1	568,2	395,3	2713,4	1067,2	716,1	3467,7	1474,7	294,3	1541,1	299,5
1	ioft deciduoras	123187,1	15071,7	21250,9	2549,0	10477,3	23849,7	4818,0	6086,1	16837,1	3709,9	2524,0	7650,1	1941,1	968,9	3746,3	1707,0
15	ium.	644972,4	24700,8	41924,5	5398,4	23338,8	73288,4	18015,9	22809,3	106253,1	36363,4	16388,1	108895,7	55312,6	6456,8	53973,6	51853,0
5	aberran.				72023,7			114643,1			165425,8			180596,4			112283,4
F	bor				9,0			6,0			4,5			3,4			2,0
ß	Total Prod	2919082,6			648213,3			687858,6			744416,1			614027,8			224566,8
ſ							_										
t																	
Ľ																	
ł	Sumpean-Ural part	of the Russian	Federatio	a.													
k	Coniferona	88090,6	6042,9	10183,0	543,3	3608,9	8719,6	674,5	3256,1	13493,9	1334,1	1625,1	20262,2	3576,5	452,8	9388,7	4929,0
P	Sand denidaonal	5106,5	420,6	1155,7	98,0	348,9	1357,1	110,8	184,6	845,9	90,9	48,5	291,7	38,2	22,3	83,1	10,2
1	ioft deciduorar	47579,8	12041,6	12799,1	561,1	4634,5	7013,1	498,1	1892,0	3363,7	337,1	560,1	1397,5	319,8	212,7	1131,3	818,1
1																	
1	iam.	140776,9	18505,1	24137,8	1202,4	8592,3	17089,8	1283,4	5332,7	17703,5	1762,1	2233,7	21951,4	3934,5	687,8	10603,1	5757,3
ļŝ	aber um				43845,3			26965,5			24798,3			28119,6			17048,2
Jł.	bot .				9,0			6,0			4,5			3,4			2,0
p	Total Prod	797696,1			394607,7			161793,0			111592,4			95606,6			34096,4
1																	
1	isian part of the Ru	usian Federati	en														
19	Conderso na	416225,2	3151,4	9254,2	2178,4	8796,6	38542,0	11955,2	13071,8	73208,7	30252,2	11522,9	77515,7	48320,3	4740,8	39297,5	44417,5
P	fard deciduorar	12363,0	14,2	80,7	29,7	107,1	820,0	457,4	210,7	1867,5	976,3	667,6	3176,0	1436,5	272,0	1458,0	789,3
ß	ioft deciduoral	75607,3	3030,1	8451,8	1987,9	5842,8	16836,6	4319,9	4194,1	13473,4	3372,8	1963,9	6252,6	1621,3	756,2	2615,0	888,9
4.																	
ſ	-um	504195,5	6195,7	17786,7	4196,0	14746,5	56198,6	16732,5	17476,6	88549,6	34601,3	14154,4	86944,3	51378,1	5769,0	43370,5	46095,7
P	aberran				28178,4			87677,6			140627,5			152476,8			95235,2
2	bot				9,0			6,0			4,5			3,4			2,0
p	Total Prod	2121386,5			253605,6			526065,6			632823,8			518421,1			190470,4
4																	
Ļ																	
p	ndez (Jonson)		1		ш	IV	¥.	12	V21	VIII							
11	a Sikiba, year		10.5	8.0	6.0	4.5	3.4	25	1.8	1.2							

Forest production potential (using Russian figures per hectare) (million cubic metres per year):

- Sweden: 23.000*3.608 = <u>83</u> (Observed growth = 117, SVO, 2009)
- Russian Federation: 808.790 000*3.608 = 2918
- Canada: (non reserved land): 260.642*3.608 = 940

38

0.0809 0.793 Harvest 0.238 ProdPot

Harvest in relation to observed growth (or in relation to potential growth):

- Sweden (estimated): 92.8/83 = **1.12**
- Sweden (observed): 92.8/117 = **0.793**
- Russian Federation: 236/2918 = 0.0809

41

• Canada: 223.5/940 = **0.238**

The Siberian Pine (Pinus sibirica)

Siberian Fir (Abies sibirica)

According to FAO (2005):

- The growing stock in Russia (in the land class "forest") is 80 479 million cubic metres over bark. The growing stock in Russia that is defined as "Commercial growing stock" is 39 630 million cubic metres over bark.
- <u>Comment by Peter Lohmander:</u> It is however very important to be aware that the size of the stock that is "commercial" depends on the prices in the product markets and production factor markets, the availability of infrastructure such as railroads and roads etc..

Russia has enormous forest resources, clearly illustrated by the very large growing stock.

The sustainable, long run, utilization of the forest resource could be very much higher.

Maybe the long run sustainable round wood harvest is ten (or more!) times higher than today.

• Since the relative prices of different production factors, inputs, are not the same in Russia and Sweden, we can be almost sure that the optimal combination of such inputs should be different.

- It is very likely that the optimal forest regeneration methods are different, that the optimal numbers of seedlings per hectare are different, that the optimal species mixes are different etc..
- The optimal harvest schedules and use of the forest resources should be expected to be quite different in Russia and Sweden.

51

49

With suitable time consistent contracts, foreign capital and labour and Russian capital and labour would benefit from participating in these operations in the form of a joint venture.

An increased use of the Russian resources can lead to improved **economic results** for Russia and possible cooperating countries, increased production of **electrical power** and other energy products, increased **employment** and general **regional development** in large areas of Russia and **environmental improvements** with respect to the CO2 - global warming issue.

50

52

 It is not possible to calculate the rational use of the forest resources without a dynamic optimization framework in which also the investments in infrastructure, forest industry and energy industry are integrated as endogenous variables.

The general structure of dynamic quadratic programming models for optimal coordinated expansion of sustainable forest and bio energy supply chains, infrastructure and industrial plants will be studied.

Alternative dynamic quadratic programming models will be described.

Typical dynamic solutions will be derived for a region in low resolution.

<complex-block><figure>

Railroad freight cost calculation (based on the World Bank Railway Database)	
3000 km *	
0.005 \$/tonkm *	
0.8 ton/m3	
= 12 \$/m3	
12\$/m3 *	
0.773 EURO/\$	
= 9.28 EURO/m3	
59	

Alternative delivery cost calculation and cost function per m3 continued

Assumption: Transport distances vary from 0 to 2110 km. Energy contents: 2 MWh/m3 $(43.5 \in -28.9 \notin) / (2110 \text{ km}) = 0.00692 \notin/\text{km}$

Alternative delivery cost function:

C = 28.9 + 0.00692 d C = Delivery cost (€/m3) d = Transport distance (km)

Example:

d=3000 km gives C = 28.9 + 0.00692*3000 = 49.66 €/m3 (or 24.83 €/MWh)

61

Observations:

- A. The cost of stem wood harvesting and terrain transport is not the same as the cost of collecting stumps, chipping branches and tops etc..
- B. The transport cost is not the same for stem wood as for chips from branches, tops and stumps.

Alternative delivery cost function: C = 28.9 + 0.00692 dC = Delivery cost (€/m3)

d = Transport distance (km)

(About 70% of the energy wood was from harvesting, consisting of non-industrial roundwood, unused branches and tops, defective wood resulting from logging, spruce stumps removed after final felling, and 30% from sawmills and phywood mills, i.e., chips, sawdust and bark.)

Multi period quadratic programming

The profit in a particular period is a function of the decisions in that period and the decisions in earlier periods

$$\pi(t) = \pi(t, d_t, d_{t-1}, \dots, d_0; \bullet) \quad , \quad \forall t$$

The decisions include investments and other decisions in infrastructure, forest industry and energy industry (=x) and forestry (=y). $d_t = \{x_t, y_t\} \quad , \quad \forall t$ 74

The volume of "first harvest" during a particular period can be described as a function of the change of the "harvesting boundary".

$$h_{0,t} = h_{0,t}(y_t, y_{t-1}; \bullet)$$
, $\forall t$

77

79

Investments (of different kinds) during a particular period are functions of the change of the infrastructure boundary.

$$inv_t = inv_t(x_t, x_{t-1}; \bullet)$$
, $\forall t$

The volume of "later harvests" during a particular period can be described as a function of the earlier changes of the "harvesting boundaries". $h_{n,t} = h_{n,t}(y_{t-s}, y_{t-s-1}, y_{t-2s}, y_{t-2s-1}, y_{t-ns}, y_{t-ns-1}; \bullet) , \quad \forall t, n$

78

In a particular period, the capacities of railroads, roads and different kinds of industries are functions of the infrastructure boundary $xi_{t} = rail_{t}(x_{t}; \bullet) , \forall t$ $road_{t} = road_{t}(x_{t}; \bullet) , \forall t$ $indc_{t} = indc_{t}(x_{t}; \bullet) , \forall t$

$$\begin{split} h_t &= v_1 x_t \quad t \in \left\{1, \dots, \Delta t\right\} \\ h_t &= v_1 x_t + v_2 x_{t-\Delta t} \quad t \in \left\{\Delta t + 1, \dots, 2\Delta t\right\} \\ h_t &= v_1 x_t + v_2 x_{t-\Delta t} + v_2 x_{t-2\Delta t} \quad t \in \left\{2\Delta t + 1, \dots, T\right\} \\ h_1 &= "h_init" \\ \end{split}$$

$$\begin{split} h_t &= u_1 x_t + v_2 x_{t-\Delta t} + v_2 x_{t-2\Delta t} \quad t \in \left\{2\Delta t + 1, \dots, T\right\} \\ h_1 &= "h_init" \\ \end{split}$$

$$\begin{split} h_t &= u_1 x_t + v_2 x_{t-\Delta t} + v_2 x_{t-2\Delta t} \quad t \in \left\{2\Delta t + 1, \dots, T\right\} \\ h_1 &= "h_init" \\ \end{split}$$

$$\begin{split} h_t &= u_1 x_t + v_2 x_{t-\Delta t} + v_2 x_{t-2\Delta t} \quad t \in \left\{2\Delta t + 1, \dots, T\right\} \\ h_1 &= u_1 x_t + v_2 x_{t-\Delta t} + v_2 x_{t-2\Delta t} \quad t \in \left\{2\Delta t + 1, \dots, T\right\} \\ h_1 &= u_1 x_t + v_2 x_{t-\Delta t} + v_2 x_{t-2\Delta t} \quad t \in \left\{2\Delta t + 1, \dots, T\right\} \\ h_2 &= u_1 x_t + v_2 x_{t-\Delta t} + v_2 x_{t-2\Delta t} \quad t \in \left\{2\Delta t + 1, \dots, T\right\} \\ h_2 &= u_1 x_t + v_2 x_{t-\Delta t} + v_2 x_{t-2\Delta t} \quad t \in \left\{2\Delta t + 1, \dots, T\right\} \\ h_2 &= u_1 x_t + v_2 x_{t-\Delta t} + v_2 x_{t-2\Delta t} \quad t \in \left\{2\Delta t + 1, \dots, T\right\} \\ h_2 &= u_1 x_t + v_2 x_{t-\Delta t} + v_2 x_{t-2\Delta t} \quad t \in \left\{2\Delta t + 1, \dots, T\right\} \\ h_3 &= u_1 x_t + v_2 x_{t-\Delta t} + v_2 x_{t-2\Delta t} \quad t \in \left\{2\Delta t + 1, \dots, T\right\} \\ h_3 &= u_1 x_t + v_2 x_{t-\Delta t} + v_2 x_{t-2\Delta t} \quad t \in \left\{2\Delta t + 1, \dots, T\right\} \\ h_4 &= u_1 x_t + v_2 x_{t-\Delta t} + v_2 x_{t-2\Delta t} \quad t \in \left\{2\Delta t + 1, \dots, T\right\} \\ h_4 &= u_1 x_t + v_2 x_{t-\Delta t} + v_2 x_{t-2\Delta t} \quad t \in \left\{2\Delta t + 1, \dots, T\right\} \\ h_4 &= u_1 x_t + v_2 x_{t-\Delta t} + v_2 x_{t-2\Delta t} \quad t \in \left\{2\Delta t + 1, \dots, T\right\} \\ h_4 &= u_1 x_t + v_2 x_{t-\Delta t} + v_2 x_{t-\Delta t} + v_2 x_{t-2\Delta t} \quad t \in \left\{2\Delta t + 1, \dots, T\right\} \\ h_4 &= u_1 x_t + v_2 x_{t-\Delta t} +$$

 $(1-dhm) < \left(\frac{h_{t+1}}{h_t}\right) < (1+dhp) \quad t \in \{1,...,T-1\}$ $h_{t+1} - (1+dhp)h_t < 0 \quad t \in \{1,...,T-1\}$ $(1-dhm)h_t - h_{t+1} < 0 \quad t \in \{1,...,T-1\}$ dhp Highest acceptable relative increase, per period, of h_t dhm Highest acceptable relative decrease, per period, of h86

A concrete example

Area = 3000 km * 1000 km = 300 M ha

Growth per ha: (m3/year)	2.5	3.5	4.5
Total growth and possible sustainable harvest:	750	1 050	1 350
(M m3/year)			
Total growth and possible sustainable harvest: (TW/b/war)	1 500	2 100	2 700

- Total growth potential 2919 million cubic metres on 645 million hectares (the best soils) gives 4.53 m3/ha.
- Total growth potential 2919 million cubic metres per 809 million hectares (total forest area) gives 3.608 m3/ha.
- <u>http://www.lohmander.com/RuMa09/Lohmander_Presentation.ppt</u>
 <u>http://www.liasa.ac.at/Research/FOR/forest_cdrom/english/for_fund_en.htm</u>

Production example without thinnings Pinus contorta, average conditions, Jämtland, Sweden, from Magnus Andersson, SCA, during excursion 2010-09-03

- Year 0: Plantation of 2200 seedlings per hectare
- Year 55: Harvest of 450 m3sk per hectare
- Average production:
- 8.18 m3sk/ha,year

Production example with thinnings

Pinus contorta, average conditions, Jämtland, Sweden from Magnus Andersson, SCA, during excursion 2010-09-03

- Year 0: Plantation of 2200 seedlings per hectare
- Year 31: Thinning 42 m3sk per hectare
- Year 41: Thinning 80 m3sk per hectare
- Year 65: Harvest 375 m3sk per hectare
- Average production:
- 7.65 m3sk/ha,year

Aggregated information has been prepared by State Enterprise "Roslesinforg" (author team V.F. Fornchenkov, V.V. Sdobnova, N.K. Danilov, S.V. Danilova, G.V. Kurdina, and T.F. Beljakova) based on data of State Forest Account, presented by regional agency of state forest management. Data have been published in V.F. Fornchenkov et al., Forest Fund of Russia (data of State Forest Account, state by January 1, 2003), Reference Book, Moscow, VNILM (AI-Russia Research Institute of Forestry and Mechanization), 640 pp. [in Russian].

99

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Optimization

(Continuous cover **or** final fellings with reforestation. Irrespective of method, the harvest volumes per hectar are given with respect to the advancement. The growth assumption made here is far below the production potential.)

Growth per ha = 2.5 m3/year

- First harvest = 50 m3/ha
- Later harvests (20 year intervals)= 2.5*20 = 50 m3/ha

Observation:

It is possible to increase the growth considerably. Then, the optimal sustainable harvest also increases.

Costs and profits etc.

• The profit will probably be higher than the calculated profit .

Reason:

• The costs of harvest operations, road investments etc. are assumed to be the same as in Sweden. This probably overestimates these costs considerably. Average wages are considerably lower in Russian federation but on the other hand, the labour efficiency is higher in Sweden in many cases.

102

104

Numerical optimization (VERSION 1)

! INTERNAT7.Ing; ! Peter Lohmander 2010_08_23;

MODEL:

SETS: time/1..50/:x,h,Prof,d; ENDSETS

rate = .05; h_init = 100; h(1) = h_init;

103

101

!Import price in Europe (Chips import price, Sweden, 2009), 50 EURO per m3; IMPP = 50; !Harvest cost (including terrain transport), 6.7 EURO/m3 (final fellings) (Sweden 2006), 13.1 EURO/m3 (thinnings). (Exchange rate = 10 SEK/EURO); HARVC = 10;

Investment in reforestation, precommercial thinnings, fertilization, maintenance and new investments in roads etc are about 45% of harvest costs in Sweden (2006); IMC = HARVC/2;!Transport cost (mainly railroad transport) from road or railroad in central Russian Federation to central Europe. Railroad transport cost: 3000 km * 0.005 \$/tonkm * 0.8 ton/m3 = 12\$/m3 = 9.28 EURO/m3.; **TRPC = 15**; NETP = IMPP - HARVC - IMC - TRPC; dNETPdh = -.004; @FREE(dNETPdh);

@for(time(t)| t#LE#20 : $h(t) = 15^*x(t)$);

@for(time(t)| t#GT#20 #AND# t#LE#40 : h(t) = 15*x(t) + 15*x(t-20));

@for(time(t)| t#GT#40 #AND# t#LE#60 : $h(t) = 15^*x(t) + 15^*x(t-20) + 15^*x(t-40));$

PresV = @sum(time(t): d(t)*Prof(t)); [totd] @sum(time(t):x(t)) <= 1000;</pre> @for(time(t)| t#LT#50 : h(t+1) < 1.2*h(t)); @for(time(t)| t#LT#50 : h(t+1) > 0.98*h(t)); 108

@FOR(time(t): d(t)=@exp(-rate*t)); max = PresV; @for(time(t): Prof(t) = (NETP + dNETPdh*h(t))*h(t)*1000000);

106

107

!Sustainable harvesting constraint; @for(time(t)| t#GT#30 : h(t) > 750);

toth = @SUM(time(t): h(t))/50; tote = 2*toth;

109 The Optimal Present Value PresV 1,64032E+11 (Approximately 164 billion Euro)

111

DATA: @OLE('internat7.XLS')=x,h,Prof, h_init, rate, PresV, toth, tote; ENDDATA end

Numerical optimization (VERSION 2) (Growth = 3.5 m3/year)

! INTERNAT7.Ing; ! Peter Lohmander 2010 08 23;

MODEL:

SETS: time/1..50/:x,h,Prof,d; ENDSETS

rate = .05; h_init = 100; h(1) = h_init;

121

!Investment in reforestation, precommercial thinnings, fertilization, maintenance and new investments in roads etc are about 45% of harvest costs in Sweden (2006);
IMC = HARVC/2;
!Transport cost (mainly railroad transport) from road or railroad in central Russian Federation to central

Europe. Railroad transport cost:

3000 km * 0.005 \$/tonkm * 0.8 ton/m3 = 12\$/m3 = 9.28 EURO/m3. ; TRPC = 15:

IRPC = 15;

NETP = IMPP - HARVC - IMC - TRPC;

dNETPdh = -.004; @FREE(dNETPdh);

123

!Import price in Europe (Chips import price, Sweden, 2009), 50 EURO per m3; IMPP = 50; !Harvest cost (including terrain transport), 6.7 EURO/m3 (final fellings) (Sweden 2006), 13.1 EURO/m3 (thinnings). (Exchange rate = 10 SEK/EURO); HARVC = 10;

122

@FOR(time(t): d(t)=@exp(-rate*t)); max = PresV; @for(time(t): Prof(t) = (NETP + dNETPdh*h(t))*h(t)*100000); @for(time(t)| t#LE#20 : h(t) = 21*x(t));

@for(time(t)| t#GT#20 #AND# t#LE#40 : h(t) = 21*x(t) + 21*x(t-20));

@for(time(t)| t#GT#40 #AND# t#LE#60 :

 $h(t) = 21^{*}x(t) + 21^{*}x(t-20) + 21^{*}x(t-40));$

PresV = @sum(time(t): d(t)*Prof(t));
[totd] @sum(time(t):x(t)) <= 1000;
@for(time(t)| t#LT#50 : h(t+1) < 1.2*h(t));
@for(time(t)| t#LT#50 : h(t+1) > 0.98*h(t));

!Sustainable harvesting constraint; @for(time(t)| t#GT#30 : h(t) > 1050);

toth = @SUM(time(t): h(t))/50; tote = 2*toth; DATA: @OLE('internat7.XLS')=x,h,Prof, h_init, rate, PresV, toth, tote; ENDDATA end

127

125

GENERAL SUGGESTIONS:

- Investigate, in detail, the most rational ways to improve the total solution.
- Some of the important parts to investigate are growth under different treatments and costs of harvesting and transport (including infrastructure investments and maintenance) under different designs of the total operation.

Then: Follow the optimized plan!

This way, Europe will get the desired amount of renewable energy, the world climate improves and considerable profits are generated!

141

Conclusions

- In Russian Federation, the potential sustainable forest harvesting level is more than ten times higher than present harvesting.
- The forest resource may be used as a sustainable source of energy in large regions of the world, such as central Europe. EU has the target of 20% renewable energy in the year 2020.
- The general structure of dynamic quadratic programming models for optimal coordinated expansion of sustainable forest and bio energy supply chains, infrastructure and industrial plants has been studied.
- Alternative dynamic quadratic programming models have been described.
- Typical dynamic solutions have been derived for a region in low resolution.

142

A global project Rational and sustainable international policy for the forest sector - with consideration of energy, global warming, risk, and regional development

Coordinator:

Professor Dr. Peter Lohmander, SLU, SE-901 83 Umea, Sweden, Peter@Lohmander.com

143

Objectives:

- The project should **develop a rational and sustainable international policy** for the forest sector with consideration of energy, global warming, risk, and regional development.
- Specific national issues and conditions should be considered in this process.

Regions and Partners

• The project organization design process is still going on. Regional coordinators have already been defined for most parts of our planet.

145

Project plan

A preliminary project plan with national perspectives on the global project can be downloaded here:

http://www.lohmander.com/ip090805.pdf

Observation: The time plan will be updated.