The Economics of Forest Biomass and a Rational European Carbon Policy

Peter Lohmander

Professor of Forest Management and Economic Optimization, Swedish University of Agricultural Sciences

http://www.lohmander.com/

NCSU, North Carolina State University,

Pulp and Paper Laboratory, Room 2221

Thursday March 22nd 3:30-4:30 PM

Audience: Forestry and Forest Biomaterials Faculty and students (and many more)

Thank you Joe Roise for taking me to NCSU!

Peter

- Economics, optimization of industrial processes, infrastructure, logistics, sustainable energy systems, forest resources, global warming, and international trade are mostly studied as more or less independent topics.
- It is however obvious that these things have very strong links.

This Presentation:

- The general problem of optimal carbon policy decisions and cost functions in forestry at the stand level.
- The general problem of optimal coordination of all forests and stands.
- Forests in the world and carbon policy topics in Europe, Russia, Canada and China.
- Optimization of a European carbon policy with links to neighbour regions.

Let us go for the optimum!

Imagine a typical forest stand in NC, USA.

Present value as a function of rotation age, t

$$\pi(t) = 40t - t^2$$

Maximization:

$$\pi'(t) = 40 - 2t = 0$$
$$\pi''(t) = -2 < 0$$

Optimal t:

$$(\pi'(t) = 40 - 2t = 0)$$

$$\Rightarrow$$

$$2t = 40$$

$$t = 20$$

$$t^* = t = 20$$

Cost for deviation, h, from optimal t:

$$C(h) = \pi(t^*) - \pi(t^* + h)$$

$$C(h) = \pi(20) - \pi(20 + h)$$

Cost for deviation, h, from optimal t:

$$C(h) = 40 \cdot 20 - (20)^{2} - (40 \cdot (20 + h) - (20 + h)^{2})$$

$$C(h) = 40 \cdot 20 - (20)^{2} - 40 \cdot (20 + h) + (20 + h)^{2}$$

$$C(h) = 40 \cdot 20 - (20)^{2} - 40 \cdot 20 - 40h + ((20)^{2} + 40h + h^{2}))$$

$$C(h) = 40 \cdot 20 - (20)^{2} - 40 \cdot 20 - 40h + (20)^{2} + 40h + h^{2}$$

$$C(h) = h^{2}$$

Cost and marginal cost for deviation, h, from optimal t:

 $C(h) = h^2$ C'(h) = 2h $C'(h)\Big|_{h=0} = 0$

Observations:

- The cost for deviation, h, from the optimal t, is a quadratic function of h.
- The marginal cost for deviation, h, from the optimal t is a linear function of h.
- The marginal cost for deviation, h, from the optimal t is approximately zero for very small values of h.

- Typical case: We are interested to store more carbon, Z.
- We assume this relationship to hold locally:

 $C(h) = h^2$

$C(Z) = \frac{1}{k^2} Z^2$

Observations:

- The cost for new carbon storage, Z, via deviation from the optimal t, is a quadratic function of Z.
- The marginal cost for new carbon storage, Z, is a linear function of Z.
- The marginal cost for new carbon storage, Z, is approximately zero for very small values of Z.

More generally:

 $\pi(t) = at - bt^2$ $\pi'(t) = a - 2bt = 0$ $\pi''(t) = -2b < 0$

 $(\pi'(t) = a - 2bt = 0)$ \Rightarrow a = 2bt $t = \frac{a}{2b}$

18

$$C(h) = \pi(t^*) - \pi(t^* + h)$$
$$C(h) = \pi(\frac{a}{2b}) - \pi(\frac{a}{2b} + h)$$

$$C(h) = a\left(\frac{a}{2b}\right) - b\left(\frac{a}{2b}\right)^2 - \left(a\left(\frac{a}{2b} + h\right) - b\left(\frac{a}{2b} + h\right)^2\right)$$

$$C(h) = a \left(\frac{a}{2b}\right) - b \left(\frac{a}{2b}\right)^2 - \left(a \left(\frac{a}{2b} + h\right) - b \left(\frac{a}{2b} + h\right)^2\right)$$
$$C(h) = a \left(\frac{a}{2b}\right) - b \left(\frac{a}{2b}\right)^2 - a \left(\frac{a}{2b} + h\right) + b \left(\frac{a}{2b} + h\right)^2$$
$$C(h) = a \left(\frac{a}{2b}\right) - b \left(\frac{a}{2b}\right)^2 - a \left(\frac{a}{2b}\right) - ah + b \left(\frac{a}{2b}\right)^2 + ah + bh^2$$
$$C(h) = bh^2$$

$C(h) = bh^2$ C'(h) = 2bh $C'(h)\Big|_{h=0} = 0$

Observations with the general present value function :

- The cost for deviation, h, from the optimal t, is a quadratic function of h.
- The marginal cost for deviation, h, from the optimal t is a linear function of h.
- The marginal cost for deviation, h, from the optimal t is approximately zero for very small values of h.

The case with many stands:

- We want to increase the total storage of carbon by the amount Z.
- We initially assume that, in every stand, this relationship holds:
- A deviation, h, from the optimal t, leads to increased carbon storage of the amount kh, where k i a strictly positive konstant.

In each stand j:

 $C_j(h_j) = b_j(h_j)^2$ $C_{i}'(h_{i}) = 2b_{i}h_{i}$

$$\min C = b_1 (h_1)^2 + b_2 (h_2)^2 + \dots + b_n (h_n)^2$$

s.t.

$$k_1 h_1 + k_2 h_2 + \dots + k_n h_n = Z$$

$$\min C = b_1 (h_1)^2 + b_2 (h_2)^2 + \dots + b_n (h_n)^2$$

s.t.

$$kh_1 + kh_2 + \ldots + kh_n = kH = Z$$

27

$$\min C = b_1 (h_1)^2 + b_2 (h_2)^2 + \dots + b_n (h_n)^2$$

s.t.

 $h_1 + h_2 + \dots + h_n = H$

min
$$C = b_1 (h_1)^2 + b_2 (h_2)^2$$

s.t.
 $h_1 + h_2 = H$

$$\min C = b_1 (h_1)^2 + b_2 (H - h_1)^2$$

$$\min C = b_1 (h_1)^2 + b_2 (H - h_1)^2$$

$$\min C = b_1 (h_1)^2 + b_2 (H^2 - 2Hh_1 + (h_1)^2)$$

$$\min C = b_1 (h_1)^2 + b_2 H^2 - 2b_2 H h_1 + b_2 (h_1)^2$$

$$\min C = b_2 H^2 - 2b_2 H h_1 + (b_1 + b_2)(h_1)^2$$

$$\min C = b_2 H^2 - 2b_2 H h_1 + (b_1 + b_2)(h_1)^2$$

$$\frac{dC}{dh_1} = -2b_2H + 2(b_1 + b_2)h_1 = 0$$

$$\frac{d^2 C}{dh_1^2} = 2(b_1 + b_2) > 0$$

$\frac{dC}{dh_1} = -2b_2H + 2(b_1 + b_2)h_1 = 0$

 $2(b_1 + b_2)h_1 = 2b_2H$

$$h_1^* = h_1 = \frac{b_2 H}{(b_1 + b_2)}$$

$$h_{1}^{*} = \frac{b_{2}H}{(b_{1}+b_{2})}$$

$$\frac{dh_{1}^{*}}{dH} = \frac{b_{2}}{(b_{1}+b_{2})} > 0$$

$$\frac{dh_{1}^{*}}{db_{1}} = \frac{-b_{2}H}{(b_{1}+b_{2})^{2}} < 0$$

$$\frac{dh_{1}^{*}}{db_{2}} = \frac{H(b_{1}+b_{2})-b_{2}H}{(b_{1}+b_{2})^{2}} = \frac{Hb_{1}}{(b_{1}+b_{2})^{2}} > 0$$

$$h_1^* = \frac{b_2 H}{\left(b_1 + b_2\right)}$$
$$\frac{dh_1^*}{dH} > 0$$

The optimal deviation, h, in a stand is an increasing function of the total amount of carbon that we want to store, Z.

$$(kH = Z, k>0)$$

$$h_1^* = \frac{b_2 H}{\left(b_1 + b_2\right)}$$
$$\frac{dh_1^*}{db_1} < 0$$

The optimal deviation, h, in a particular stand is a decreasing function of the second derivative parameter of the present value function in that particular stand.
$$h_1^* = \frac{b_2 H}{(b_1 + b_2)}$$
$$\frac{dh_1^*}{db_2} > 0$$

The optimal deviation, h, in a particular stand is an increasing function of the second derivative parameter of the present value function in other stands!

The optimal decisions in other stands are affected by the properties of the present value function in this particular stand!

$$h_{2}^{*} = \frac{b_{1}H}{(b_{1}+b_{2})}$$

$$\frac{dh_{2}^{*}}{dH} = \frac{b_{1}}{(b_{1}+b_{2})} > 0$$

$$\frac{dh_{2}^{*}}{db_{1}} = \frac{H(b_{1}+b_{2})-b_{1}H}{(b_{1}+b_{2})^{2}} = \frac{b_{2}H}{(b_{1}+b_{2})^{2}} > 0$$

$$\frac{dh_{2}^{*}}{db_{2}} = \frac{-b_{1}H}{(b_{1}+b_{2})^{2}} < 0$$

A more general case:

 $\min C = b_1 (h_1)^2 + b_2 (h_2)^2$

s.t.

 $k_1 h_1 + k_2 h_2 = Z$

$$\begin{pmatrix} k_1 h_1 + k_2 h_2 = Z \end{pmatrix}$$
$$\Rightarrow$$

$$h_2 = \frac{Z - k_1 h_1}{k_2}$$

$$\min C = b_1 (h_1)^2 + b_2 \left(\frac{Z - k_1 h_1}{k_2}\right)^2$$

$$\min C = b_1 (h_1)^2 + b_2 \left(\frac{Z - k_1 h_1}{k_2}\right)^2$$
$$\min C = b_1 (h_1)^2 + b_2 \left(\frac{Z}{k_2} - \frac{k_1 h_1}{k_2}\right)^2$$
$$\min C = b_1 h_1^2 + b_2 \left(\frac{Z}{k_2}\right)^2 - 2b_2 \frac{Zk_1}{k_2^2} h_1 + b_2 \left(\frac{k_1}{k_2}\right)^2 h_1^2$$

$$\min C = b_1 h_1^2 + b_2 \left(\frac{Z}{k_2}\right)^2 - 2b_2 \frac{Zk_1}{k_2^2} h_1 + b_2 \left(\frac{k_1}{k_2}\right)^2 h_1^2$$
$$\min C = b_2 \left(\frac{Z}{k_2}\right)^2 - 2b_2 \frac{Zk_1}{k_2^2} h_1 + \left(b_1 + b_2 \left(\frac{k_1}{k_2}\right)^2\right) h_1^2$$
$$\min C = \frac{b_2 Z^2}{k_2^2} - \frac{2b_2 Zk_1}{k_2^2} h_1 + \left(b_1 + \left(\frac{k_1}{k_2}\right)^2 b_2\right) h_1^2$$

$$\min C = \frac{b_2 Z^2}{k_2^2} - \frac{2b_2 Z k_1}{k_2^2} h_1 + \left(b_1 + \left(\frac{k_1}{k_2}\right)^2 b_2\right) h_1^2$$

$$\frac{dC}{dh_1} = -\frac{2b_2Zk_1}{k_2^2} + 2\left(b_1 + \left(\frac{k_1}{k_2}\right)^2 b_2\right)h_1 = 0$$
$$\frac{d^2C}{dh_1^2} = 2\left(b_1 + \left(\frac{k_1}{k_2}\right)^2 b_2\right) > 0$$

 $\frac{dC}{dh_1} = -\frac{2b_2Zk_1}{k_2^2} + 2\left(b_1 + \left(\frac{k_1}{k_2}\right)^2 b_2\right)h_1 = 0$

$$h_{1} = \frac{b_{2}k_{1}Z}{k_{2}^{2}\left(b_{1} + \left(\frac{k_{1}}{k_{2}}\right)^{2}b_{2}\right)}$$

$$h_{1} = \frac{b_{2}k_{1}Z}{k_{2}^{2}\left(b_{1} + \left(\frac{k_{1}}{k_{2}}\right)^{2}b_{2}\right)}$$
$$h_{1} = \frac{b_{2}k_{1}Z}{(1 + 1)^{2}}$$

$$h_{1} = \frac{b_{2}k_{1}Z}{k_{2}^{2}\left(b_{1} + \frac{k_{1}^{2}}{k_{2}^{2}}b_{2}\right)}$$

$$h_1 = \frac{b_2 k_1 Z}{\left(k_2^2 b_1 + k_1^2 b_2\right)}$$

$$h_{1} = \frac{b_{2}k_{1}Z}{\left(k_{2}^{2}b_{1} + k_{1}^{2}b_{2}\right)}$$

$$h_{1} = \frac{b_{2}k_{1}Z}{\left(k_{2}^{2}b_{1} + k_{1}^{2}b_{2}\right)}$$

$$h_{1} = \frac{b_{2}k_{1}Z}{\left(k_{2}^{2}b_{1} + k_{1}^{2}b_{2}\right)}$$

$$\frac{dh_{1}}{db_{2}} = \frac{k_{1}Z\left(k_{2}^{2}b_{1} + k_{1}^{2}b_{2}\right) - b_{2}k_{1}Zk_{1}^{2}}{\left(k_{2}^{2}b_{1} + k_{1}^{2}b_{2}\right)^{2}}$$

$$\frac{dh_{1}}{db_{2}} = \frac{k_{1}Z\left(k_{2}^{2}b_{1}\right)}{\left(k_{2}^{2}b_{1} + k_{1}^{2}b_{2}\right)^{2}} > 0$$

Also in the general case:

The optimal deviation, h, in a stand is an increasing function of the total amount of carbon that we want to store, Z.

Also in the general case:

The optimal deviation, h, in a particular stand is decreasing function of the second derivative parameter of the present value function in that particular stand. Also in the general case:

The optimal deviation, h, in a particular stand is an increasing function of the second derivative parameter of the present value function in other stands!

Let us investigate the World!

- Existing stocks of global biomass
- Present harvests of global biomass
- International trade:
 - volumes and prices of "forest biomass"
- Rational sustainable management
- Rational infrastructure investments

- Economics, optimization of industrial processes, infrastructure, logistics, sustainable energy systems, forest resources, global warming, and international trade are mostly studied as more or less independent topics.
- It is however obvious that these things have very strong links. This lecture focuses on the big picture, painted this way: Our planet has a common atmosphere.
- If, and to what extent, we have global warming problem, partly caused by an increasing CO2 level in the atmosphere, is and has been intensively debated in connection to international negotiations during the latest period.

- In any case, some countries and regions of the world, have already defined targets with consideration of the CO2 issue. For instance, European Union has the target to have at least 20% renewable energy in the year 2020.
- The global distribution of forest resources such as standing timber and forest land with different properties can be studied via official statistics published by United Nations and different national and regional organizations.
- The rationality of existing and potential forest activities, such as harvesting and forest investments in different parts of the world, can be studied and analysed via cost and revenue data obtainable from a large number of sources, including published reports from forest reserach organizations.

- Statistics of relevance to infrastructure and logistics, such as capacities and costs in different countries, are available from the World Bank.
- It has been found that the "forest production capacity utilization" levels are very different in different countries. In large regions, such as Russian Federation and Canada, the harvest levels are several times lower than what is possible if the production potential of the land is fully utilized. This partly depends on limited infrastructure availablility in these regions.
- The present lecture contains a general analysis of some of the central decision problems of relevance to "Economic optimization of sustainable energy systems based on forest resources with consideration of the global warming problem, with international perspectives" 58

- An operations research approach to the total optimization problem is suggested, that maximizes the expected present value and takes the CO2 considerations into account in different forms.
- In order to generate optimal total results, infrastructure investments have to be coordinated with forest utilization expansion. Furthermore, all other related decisions have to be handled in an optimal way.
- Some examples are given that show that it is possible to generate considerable economic results and simultaneously reach the CO2 targets.

- In order to obtain the best possible total economic and environmental results, it is important to update existing national forest laws and regulations and to investigate the problems without considering national boundaries as strict constraints.
- Economics and environmental issues are global topics and have to be treated as such, in the interest of general economic development and the sustainability of life on our planet.

IMPORTANT OBSERVATIONS

EU has the target of 20% renewable energy in the year 2020. <u>http://ec.europa.eu/energy/index_en.htm</u>

In Russian Federation and Canada, the potential sustainable forest harvesting levels are several times higher than present harvesting.

These biomass resources may be used as a sustainable source of energy in large regions of the world, such as central Europe.

2.2.2

Gross Inland Consumption 2007 (Mtoe)

Source: Eurostat, May 2009

http://ec.europa.eu/energy/publications/statistics/doc/2010_energy_transport_figures.pdf

Conversion Factors									
ENERGY									
FROM:	TO:	LΊ	Gcal	Mtoe	GWh				
TJ		1	238.8	2.388 x 10 -5	0.2778				
Gcal		4.1868 x 10 -3	1	1 x 10 -7	1.163 x 10 -3				
Mtoe		4.1868 x 10 ⁴	1 x 10 ⁷	1	11 630				
GWh		3.6	860	8.6 x 10 ⁻⁵	1				

1806.4 Mtoe * 11.630 TWh/Mtoe = 21 008 TWh

(20% - 7.8%) of 21 008 TWh = 2 563 TWh

CENTRAL QUESTIONS:

 Where can Europe find 2 563 TWh of "new" renewable energy ?

 Would it be profitable to deliver this renewable energy to Europe?

Existing stocks of global biomass

Source: The Global Forest Resources Assessment 2005, Main Report, FAO Forestry Paper 147 Adaptions by Peter Lohmander.

Cubic metres to energy:

- 1 million cubic metre (on bark) can give approximately 2 TWh.
- (The number "2" is a rough approximation for Swedish average conditions". Water contents and other properties affect these figures.)

Lohmander, P., Stor potential för svensk skogsenergi, Nordisk Energi, Nr. 2, 2009 http://www.lohmander.com/Information/ne1.jpg http://www.lohmander.com/Information/ne2.jpg

http://www.lohmander.com/Information/ne3.jpg

Original manuscript with links to all background tables and assumptions: http://www.lohmander.com/PL_SvSE_090205.pdf

Energy from different fuels

Water

	contents				
	Bränslesortiment	Fukthalt	MWh/ton (enligt angiven fukthalt)		
Stem wood and chips	Stamved och flis	0 %	5,4		
	Stamved och flis	50 %	2,4		
Energy forest	Energiskog	0 %	4,9		
	Övriga träddelar	0%	4,9		
	Bark	50%	2,4		
	Kol		7,5		
	Eldningsolja 1 (EO1)		9,9		
	Eldningsolja 5 (EO5)		10,8		
	Ved	50%	1,9 MWh/m³f		

1 m³ EO1 = 0,835 ton 1 m³ EO5 = 0,940 ton Ved och flis, 50 % fukthalt = 0,800 ton/m³f Bark, 50 % fukthalt = 0,670 ton/m³f

Källa: Virkesbalanser 1992, Meddelande 2-1993, Skogsstyrelsen

Energy unit conversions

Källa: SCB EN 23 SM 0601

	till				
från	MWh	GJ	Gcal	toe	MBTU
1 MWh	1	3,6	0,859845	0,0859845	3,41297
1 GJ	0,27778	1	0,238846	0,0238846	0,948047
1 Gcal	1,163	4,1868	1	0,1	3,96928
1 toe	11,63	41,868	10	1	39,6928
1 MBTU	0,293	1,0548	0,251935	0,0251935	1
Utgångsvärden:		1 MWh=	3,6 GJ		
		1 Gcal=	1,163 MWh		
		1 MBTU=	1,0548 GJ		

Forest Land and Total Land 2005

Source: The Global Forest Resources Assessment 2005, Main Report, FAO Forestry Paper 147 Adaptions by Peter Lohmander.

Source: The Global Forest Resources Assessment 2005, Main Report, FAO Forestry Paper 147 Adaptions by Peter Lohmander.

Region	No. of	Popu-	Land	Forest	Other	Annual	Forest lar		
	countries	lation	area	land area ¹	wooded land area²	net change in forest land area 2000- 2005	Growing stock volume	Growing stock volume per ha	Growing stock volume per capita
		milj.	milj.			1000 ha	milj. m ³	m³/ha	m ³
Europe ³	47	723	2 261	1 002	101	661	107 264	107	148
North and Central									
America South	37	508	2 1 4 4	706	118	-333	78 582	101	155
America	15	365	1 754	832	129	-4 251	128 944	155	354
Asia	48	3 838	3 097	571	191	1 003	47 111	82	12
Oceania	24	33	849	206	430	-356	7 361	36	225
Africa	58	868	2 963	635	406	-4 040	64 957	102	75
Entire	Start								
World	229	6 335	13 067	3 952	1 376	-7 317	434 219	110	69

Selected forestry data by region, year 2005

Existing stocks of global biomass

(Focus on the northern hemisphere)

Russian Fed.

Sweden

Canada

Forest area (million hectares):

- Sweden: 23.000 (SVO, 2009)
- Russian Federation: 808.790 (FAO, 2005)
- Canada: non res. = 260.643. (Canfi 2001)

Forest stock (million cubic metres):

 Sweden:
 3 155
 (SVO, 2008)

 Russian Federation:
 80 479
 (FAO, 2005)

 Canada:
 29 384
 (Canfi 2001)

 Canada
 32 983
 (FAO 2005)

Present harvests of global biomass

Roundwood production by region and country, year 2008

	Industrial wood							
Region/country	coniferous sp.			non-coniferous sp.				
		Sawlogs and veneer			Sawlogs and veneer		Fuelwood and	Total
	Total ¹	logs	Pulp-wood	Total ¹	logs	Pulpwood	charcoal	roundwood
	million m3 fub							
Europe	385,5	234,7	129,9	119,1	52,4	57,7	152,5	657,1
Sweden	59,9	32,1	27,6	3,2	0,2	2,7	5,9	69,0
Russian Federation	101,2	60,5	28,6	35,5	17,7	14,1	44,7	181,4
Africa	9,3	4,7	4,1	61,0	21,8	12,3	637,6	707,9
Asia	93,8	57,4	11,1	149,5	94,2	23,9	753,7	997,0
Canada	125,0	116,0	8,6	27,7	13,2	11,9	2,9	155,5
USA	225,0	137,2	83,4	111,7	51,7	56,1	43,6	380,2
Latin America	86,3	48,5	35,0	110,5	41,0	61,4	285,9	482,7
Oceania	34,7	18,7	8,0	17,6	7,7	9,6	15,9	68,3
Entire world	<mark>96</mark> 0	617	280	597	282	233	1 892	3 449

1 Inkl. övrigt rundvirke (pålar, stolpar, gruvstolpar m.m.). Includes other industrial roundwood such as poles, pitprops, posts etc.

Källa: FAOSTAT Databas Source: FAOSTAT Database

Source: FAOSTAT Adaptions by Peter Lohmander.

International Trade: Volumes and Prices of "forest biomass"

Export and import of roundwood, chips, particles and wood residues, year 2008

	Export				Import					
Region/country	Coniferous species	erous Non-conif s <u>species</u> Tropical		on-coniferous Chips, particles & pecies wood residues		Non-coni species Tropical	erous Chips, particles wood residues			
	1 000 m3f									
	ub									
			25				22			
Europe	50 657	61	241	25 536	31 953	865	786	29 532		
Sweden	2 334	0	15	854	3 377	3	3 402	2 716		
			11							
Russian Fed.	25 034	0	750	3 081	286	0	0	5		
Africa	202	2 912	301	3 393	280	132	342	19		
							13			
Asia	454	7 446	60	4 509	32 158	9 936	131	27 469		
North America	10 379	7	2 652	9 1 2 1	4 207	6	1 826	4 879		
Canada	2 659	5	174	2 775	3 035	1	1 573	3 891		
USA	7 720	2	2 478	6 3 4 6	1 171	5	253	988		
Latin America	327	329	3 965	9 3 2 5	353	14	84	253		
Oceania	7 587	2 724	1184	10 190	9	2	6	6		
			33				38			
Entire world	69 607	13 479	403	62 075	68 961	10 954	175	62 159		

Source: FAOSTAT Database

Source:"Foreign Trade", Statistics Sweden; Sweden's statistical databases

ЭT

Source:"Foreign Trade", Statistics Sweden; Sweden's statistical databases

	Import			Export					
Year									
						Value	Average		
	Quantity	Value (Cif)	Average price	Quantity		(Fob)	price		
						1 000	SEK/m ³		
	1000	1 000 SEK	SEK/m ³ f ub	1000		SEK	f ub		
	m³ f ub			m³ f ub					
2000	331	156 592	473		53	20 260	380		
2001	366	190 511	520	1	18	51 781	437		
2002	377	203 896	541	1	37	63 083	459		
2003	567	363 394	641		81	48 051	597		
2004	736	397 918	541	1	91	91 067	478		
2005	805	411 335	511	3	311	189 809	609		
2006	1 018	644 689	633	2	80	202 666	723		
2007	871	600 619	689	2	34	153 389	656		
2008	1 016	731 449	720	2	14	193 696	905		
2009 ²									
Wood residues ³	601	276 201	459	:	19	20 188	1 063		
Sawdust ³	47	14 941	317	:	52	61 141	1 176		
Pellets ³	939	727 016	775	14	43	130 666	912		

Foreign trade in wood residues, sawdust etc. (Sweden)

1. Nettoimport markerat med minustecken. Net trade (minus sign indicates net import)

2 Uppgifter särredovisas från 2009. Tidigare uppgifter ingick i träavfall m.m. Fr.o.m. 2009 är jämförelse med tidigare år ej relevant. För ytterligare information se kapiteltexten

Figures separated in 2009. Earlier years the figures were incl into wood residues etc. From 2009 onward, comparison with previous years are not relevant. For further information see English summary

3. Träavfall/ wood residues avser refers to KN/CN stat nr 44013080; sågspån/ sawdust avser refer to KN/CN stat nr 44013040; pelleter avser refer to stat nr 44013020

Källa: SCB, Utrikeshandel, Sveriges statistiska databaser Source: "Foreign Trade", Statistics Sweden; Sweden's statistical databases.

Exchange rate: Approximately 10 SEK/EURO

Wood fuel, Price (SEK/MWh), Sweden

Period	2006	2007	2008	2009				2009:2	2009:3	2009:4	2010:1
				Hela Sverige	Norra ^{1,2}	Mellersta ^{1,3}	Södra ^{1,4}				
Förädlade trädbränslen: (briketter & pellets)	Pel	lets et	с.								31 EURC
Värmeverk	211	244	271	298	316	308	290	282	305	309	310 ^P
Skogsflis:	Skogsflis: For		Forest chips								20 EURC
Industri	119	128	146	176	-1	-1	_1	177	188	186	199 ^P
Värmeverk	146	158	167	181	187	186	171	174	178	195	199 ^P
Biprodukter:											
Industri	112	153	160	172	-1	-1	_1	179	167	189	184 ^P
Värmeverk	128	134	157	170	178	172	155	167	166	180	178 ^P
Returträ:											
Värmeverk	78	64	69	78	55	77	85	70	80	92	101 ^P

Tabell 1 Trädbränsle, kronor/MWh fritt förbrukare, löpande priser exklusive skatt.

1) Den regionala redovisningen omfattar endast värmeverken. Observera att medelpriserna i regionerna är mera osäkra än medelpriset för riket. 2) Y, Z, AC och BD län. 3) AB, C, D, E, S, T, U, W och X län. 4) Övriga landet. 5) Alltför få uppgifter i underlaget för att redovisa. R) Uppgiften har reviderats sedan Prisblad 1/2010. P) Preliminär uppgift.

(Calculations based on exchange rate 10 SEK/EURO)

Sustainable management

Present harvests of global biomass

(Focus on the northern hemisphere)

Forest harvest (million cubic metres) (FAO, 2005):

- Sweden: 92.8 (Roundwood + pulpwood)
- Russian Federation: 236 (Roundwood + pulpwood)
- Canada: 223.5 (Industrial roundwood 219.5 + woodfuel 4)

Russian site index tables give:

- Total growth potential 2919 million cubic metres on 645 million hectares (the best soils) gives 4.53 m3/ha.
- Total growth potential 2919 million cubic metres per 809 million hectares (total forest area) gives 3.608 m3/ha.
- <u>http://www.lohmander.com/RuMa09/Lohmander_Presentation.ppt</u>
- <u>http://www.iiasa.ac.at/Research/FOR/forest_cdrom/english/for_fund_en.html</u>

Tabell 3.13	3 Tillväxt i virkesförrådet, i genomsnitt för perioden 2002-2006. Inklusive tillväxt för avverkade träd										
	Mean annual volume increment 2002-2006. Including growth on felled trees										
Län och	Skogsmark F	orest land					Alla ägoslag	² All land use	classes ^z		
landsdel1	Tall	Gran	Björk	Övr löv	Summa	volym/ha	Tall	Gran	Björk	Övr löv	Summa
Counties	Scots pine	Norway	Birch	Other broad-	Total	volume	Scots pine	Norway	Birch	Other broad	- Total
and		spruce		leaves		per ha		spruce		leaves	
regions					-		***				
	тщ, тък ре	rar				m ^{-sk/na}	muj. m sk pe	rar			
Norrbottens	5.34	1.98	1.80	0.17	9.30	2.59	5.71	2.27	2.10	0.21	10.29
Västerbotter	4.60	3.28	1.95	0.18	10.01	3.13	4,98	3.43	2.15	0.20	10.76
Jämtlands	3.43	3,94	1.47	0.24	9.09	3.41	3.63	4.19	1.70	0.27	9,79
Västernorria	2.67	3,94	1,38	0,51	8,50	5.00	2,84	4.01	1,43	0.55	8.83
Gävleborgs	3,78	3,02	1,08	0,26	8,15	5,25	3,89	3,05	1,14	0,33	8,41
Dalarnas	3,71	2,66	0,88	0,15	7,40	3,92	3,84	2,69	0,96	0,17	7,66
Värmlands	2,40	4,21	1,04	0,27	7,92	5,93	2,62	4,24	1,10	0,32	8,28
Örebro	1,07	1,87	0,54	0,25	3,72	6,51	1,15	1,88	0,58	0,33	3,94
Västmanland	0,75	1,11	0,31	0,15	2,31	6,31	0,79	1,11	0,33	0,22	2,45
Uppsala	0,82	1,15	0,33	0,22	2,52	6,01	0,87	1,17	0,34	0,30	2,68
Stockholms	0,43	0,68	0,25	0,24	1,60	5,84	0,55	0,70	0,30	0,37	1,92
Södermanlar	0,83	1,14	0,22	0,18	2,37	6,95	0,90	1,15	0,26	0,24	2,55
Östergötland	1,44	2,36	0,48	0,43	4,71	7,42	1,60	2,37	0,52	0,53	5,02
Västra Götal	1,73	5,96	1,17	0,69	9,56	7,60	1,98	6,04	1,31	0,89	10,22
Jönköpings	1,10	3,25	0,60	0,28	5,23	7,19	1,17	3,27	0,66	0,38	5,48
Kronobergs	0,89	3,03	0,56	0,24	4,72	7,30	0,94	3,05	0,60	0,29	4,88
Kalmar	1,56	2,27	0,51	0,51	4,84	6,68	1,65	2,28	0,56	0,62	5,11
Gotlands	0,22	0,05	0,03	0,03	0,34	2,93	0,24	0,05	0,04	0,05	0,38
Hallands	0,29	1,88	0,25	0,23	2,66	8,66	0,34	1,89	0,28	0,27	2,78
Blekinge	0,12	1,12	0,19	0,27	1,70	8,90	0,13	1,12	0,20	0,32	1,77
Skåne	0,26	2,30	0,31	0,73	3,59	9,25	0,29	2,31	0,35	0,81	3,76
N Norrland	9,94	5,26	3,76	0,35	19,31	2,84	10,69	5,70	4,26	0,40	21,05
S Norrland	9,88	10,91	3,94	1,02	25,75	4,35	10,36	11,25	4,27	1,15	27,03
Svealand	10,00	12,82	3,57	1,46	27,84	5,36	10,71	12,95	3,88	1,95	29,49
Götaland	7,60	22,22	4,10	3,42	37,34	7,48	8,34	22,39	4,53	4,16	39,42
Hela landet											
Entire											
country	37,42	51,21	15,37	6,24	110,24	4,81	40,10	52,30	16,93	7,66	116,99
1. Exklusive :	fjäll, fridlyst r	nark, militära	impediment, b	ebyggd mark	och söt och s	altvatten.					
1. Excluding	high mountair	is, nature rese	rves, military	wasteland, urb	an land and w	ater					
2. Beträffande områdesindelningen, se bilaga 7 fig 2. Boundaries of counties and regions are shown in Appendix 7, Figure 2											
m³sk per år =	cubic metre	standing volu	ime per year,	from stump to	tip including	bark					
m³sk per ha	= cubic metre	standing vol	ume per hecta	are, from stur	p to tip inclu	ding bark					
Källa: Rikssk	ogstaxeringei	n Source: Sw	edish Nationa	al Forest Inver	ntory						
Sveriges	Sveriges officiella statistik										

Annual volume growth (increment)

116.99

105

Forest production potential (using Russian figures per hectare) (million cubic metres per year):

- Sweden: 23.000*3.608 = <u>83</u> (Observed growth = 117, SVO, 2009)
- Russian Federation: 808.790 000*3.608 = **<u>2 918</u>**
- Canada: (non reserved land): 260.642*3.608 = <u>940</u>

Harvest in relation to observed growth (or in relation to potential growth):

- Sweden (estimated): 92.8/83 = **1.12**
- Sweden (observed): 92.8/117 = **0.793**
- Russian Federation: 236/2918 = **0.0809**
- Canada: 223.5/940 = **0.238**

Figure 5.3a Allowable annual cut versus actual harvest (provincial crown land), 1990–2005 (million m3) (CCFM, 2008).

Criteria and Indicators of Sustainable Forest Management in Canada: National Status 2005

Data updated: January 2008

© Canadian Council of Forest Ministers

http://www.ccfm.org/ci/rprt2005/English/pdf/5.3a.pdf

http://www.canadaforests.nrcan.gc.ca/articletopic/14

A global endowment

Article Date: 2005-09-01

About 750 000 hectares—or 0.2 percent of the total boreal forest —are harvested each year.

The part not managed for timber production is either unavailable because it has been designated as protected areas and reserves, or currently considered inaccessible.

Unlike the forests of the United States, Scandinavia and the majority of other nations, most of Canada's forests (93 percent) are publicly owned. The remaining 7 percent are held by private owners.

http://www.sfmcanada.org/english/pdf/SFMBooklet_E_US.pdf

Access by Road to Canada's Boreal Region

http://www.sfmcanada.org/english/im-accessbyroad.asp

OTHER

Focus on Russian Federation

Strategic options for the forest sector in Russia with focus on economic optimization, energy and sustainability

International Seminar: Economics of Forestry and the Forest Sector: Actual Problems and Trends, Saint Petersburg, Russia, March 26-27, 2009

Saint-Petersburg State Forest Technical Academy, PROCES – EFI Project Centre in Saint Petersburg, International Centre of Forestry and Forest Industry (ICFFI)

Peter Lohmander

Professor of Forest Management and Economic Optimization SLU, Swedish University of Agricultural Sciences Umea, Sweden <u>http://www.Lohmander.com</u> No country has a larger forest than Russia.

The growing stock is 25.5 times larger in Russia than in Sweden.

The growing stock is 37.3 times larger in Russia than in Finland.

The sustainable long run utilization of the Russian forest could increase very much, maybe ten times!

The harvest levels of the main wood assortments are only 2-3 times higher than in Sweden.

According to FAO (2005):

- The growing stock in Russia (in the land class "forest") is 80 479 million cubic metres over bark. The growing stock in Russia that is defined as "Commercial growing stock" is 39 630 million cubic metres over bark.
- <u>Comment by Peter Lohmander:</u> It is however very important to be aware that the size of the stock that is "commercial" depends on the prices in the product markets and production factor markets, the availability of infrastructure such as railroads and roads etc..

Russia has enormous forest resources, clearly illustrated by the very large growing stock.

The sustainable, long run, utilization of the forest resource could be very much higher.

Maybe the long run sustainable round wood harvest could be ten times higher than today. With suitable time consistent contracts, foreign capital and labour and Russian capital and labour would benefit from participating in these operations in the form of a joint venture.

An increased use of the Russian resources can lead to improved economic results for Russia and possible cooperating countries, increased production of electrical power and other energy products, increased employment and general regional development in large areas of Russia and environmental improvements with respect to the CO2 - global warming issue.

- Since the relative prices of different production factors, inputs, are not the same in Russia and Sweden, we can be almost sure that the optimal combination of such inputs should be different.
- It is very likely that the optimal forest regeneration methods are different, that the optimal numbers of seedlings per hectare are different, that the optimal species mixes are different etc..
- The optimal harvest schedules and use of the forest resources should be expected to be quite different in Russia and Sweden.

 It is not possible to calculate the rational use of the forest resources without a dynamic optimization framework in which also the investments in infrastructure, forest industry and energy industry are integrated as endogenous variables.

Infrastructure investments

(in optimal combination with harvesting and transport)

The general structure of dynamic quadratic programming models for optimal coordinated expansion of sustainable forest and bio energy supply chains, infrastructure and industrial plants will be studied.

Alternative dynamic quadratic programming models will be described.

Typical dynamic solutions will be derived for a region in low resolution.

http://www.internationaltransportforum.org/Pub/pdf/10KeyStat2009.pdf

OBSERVATION: 1000 M m3 * 0.8 ton/m3 * 3000 km = 2 400 000 M ton-km

Source:

The World Bank, World Bank Railway Database, 2010

<u>http://siteresources.worldbank.org/EXTRAILWAYS/Resources/515244-1268663980770/6863841-1276539314873/railways_database_2007.xls</u>

128

Railroad freight cost calculation

3000 km * 0.005 \$/tonkm * 0.8 ton/m3 = 12 \$/m3

12\$/m3 * 0.773 EURO/\$ = 9.28 EURO/m3

Let us try to hit the optimal solution!

Method:

Multi period quadratic programming

MODEL 1:

$\max_{d_1,\ldots,d_T} \Pi = \sum_t e^{-rt} \pi(t)$

The profit in a particular period is a function of the decision in that period and the decision in earlier periods

$$\pi(t) = \pi(t, d_t, d_{t-1}, \dots, d_0; \bullet) \quad , \quad \forall t$$

The decisions include investments and other decisions in infrastructure, forest industry and energy industry (=x) and forestry (=y).

In each period, the forestry activities are constrained by the infrastructure boundary

The volume of "first harvest" during a particular period can be described as a function of the change of the "harvesting boundary".

$$h_{0,t} = h_{0,t}(y_t, y_{t-1}; \bullet) , \quad \forall t$$

The volume of "later harvests" during a particular period can be described as a function of the earlier changes of the "harvesting boundaries".

$$h_{n,t} = h_{n,t}(y_{t-s}, y_{t-s-1}, y_{t-2s}, y_{t-2s-1}, y_{t-ns}, y_{t-ns-1}; \bullet)$$
, $\forall t, n$

Investments (of different kinds) during a particular period are functions of the change of the infrastructure boundary.

 $inv_{t} = inv_{t}(x_{t}, x_{t-1}; \bullet)$, $\forall t$

In a particular period, the capacities of railroads, roads and different kinds of industries are functions of the infrastructure boundary

$$rail_t = rail_t(x_t; \bullet)$$
, $\forall t$

$$road_t = road_t(x_t; \bullet)$$
, $\forall t$

$$indc_t = indc_t(x_t; \bullet)$$
, $\forall t$

Model 2: $\max_{(x_1,...,x_T)} \Pi = \sum_{t=1}^T e^{-rt} P_t(h_t) h_t - C(.)$

- Total present value (M EURO) h_t Harvest volume during period t (M m3)
- *t* Period (year)

T Time horizon (year)

- X_t Advancement during period t (km)
 - $\boldsymbol{\mathcal{V}}$ Rate of interest

 $P_t(h_t)$ Net price = Price minus variable harvesting costs per cubic metre (EURO/m3)

 $C(.) \begin{array}{l} \text{Costs of infrastructure investments} \\ \text{and other costs not included in } P_t(h_t) \\ \text{(M EURO)} \end{array}$

T $\sum x_t \le M$ *t*=1

Advancement during period t (km)

M Total advancement limit (km)

$$h_{t} = v_{1}x_{t} \quad t \in \{1, ..., \Delta t\}$$

$$h_{t} = v_{1}x_{t} + v_{2}x_{t-\Delta t} \quad t \in \{\Delta t + 1, ..., 2\Delta t\}$$

$$h_{t} = v_{1}x_{t} + v_{2}x_{t-\Delta t} + v_{2}x_{t-2\Delta t} \quad t \in \{2\Delta t + 1, ..., T\}$$

$$h_{1} = "h_init"$$

 h_t Harvest volume during period t (M m3) Δt Harvest interval (years)

 \mathcal{V}_1 Harvest volume per advancement distance during the first harvest (M m3/km)

 \mathcal{V}_2 Harvest volume per advancement distance during the second (or later) harvest (M m3/km)

\mathcal{V}_1 Harvest volume per advancement distance during the first harvest (M m3/km).

Examples:

Distance from west to east = 3000 km.

1 km*3000km = 3000 km*km = 300 000 ha

"First harvest" / km

50 m3/ha * 300 000 ha/km

= 15 M m3/km

or

- = 100 m3/ha * 300 000 ha/km
- = 30 M m3/km

Harvest volume per advancement distance during the second (or later) harvest (M m3/km).

Example:

Distance from west to east = 3000 km.

1 km*3000km = 3000 km*km = 300 000 ha

"Second (or later) harvest" / km = 50 m3/ha * 300 000 ha/km= 15 M m3/km

$$\left(1-dhm\right) < \left(\frac{h_{t+1}}{h_t}\right) < \left(1+dhp\right) \quad t \in \left\{1, \dots, T-1\right\}$$

$$h_{t+1} - (1 + dhp)h_t < 0 \quad t \in \{1, ..., T - 1\}$$

$$(1-dhm)h_t - h_{t+1} < 0 \quad t \in \{1, ..., T-1\}$$

dhp Highest acceptable relative increase, per period, of h_t

dhm Highest acceptable relative decrease, per period, of h_r

A concrete example

Area = 3000 km * 1000 km = 300 M ha

Growth per ha: (m3/year)	2.5	3.5	4.5
Total growth and possible sustainable harvest:	750	1 050	1 350
(M m3/year)			
Total growth and possible sustainable harvest: (TWh)	1 500	2 100	2 700

Growth assumptions: Russian site index tables show that the potential sustainable growth and harvest are several times higher than the reported growth.

- Total growth potential 2919 million cubic metres on 645 million hectares (the best soils) gives 4.53 m3/ha.
- Total growth potential 2919 million cubic metres per 809 million hectares (total forest area) gives 3.608 m3/ha.

<u>http://www.iiasa.ac.at/Research/FOR/forest_cdrom/english/for_fund_en.html</u>

 <u>http://www.lohmander.com/RuMa09/Lohmander_Presentation.ppt</u>

																Table 9
			Distribu	ution of f	orests b	v relativ	e stocki	ng and si	ite index	. 10 ³ ha						
						,		-		,						
Subjects of RF,	Subjects of RF, Total Site index															
groups of main	area	I	I I and higher						ΙV				/ Va and lower			
forest forming	covered		Dis						rest area by	7 relative st	ocking					
species	by forest	1.0 - 0.8	0.7 - 0.5	0.4 - 0.3	1.0 - 0.8	0.7 - 0.5	0.4 - 0.3	1.0 - 0.8	0.7 - 0.5	0.4 - 0.3	1.0 - 0.8	0.7 - 0.5	0.4 - 0.3	1.0 - 0.8	0.7 - 0.5	0.4 - 0.3
	vegetation															
Russian Federation	L															
Coniferous	504315,8	9194,3	19437,2	2721,7	12405,5	47261,6	12629,7	16327,9	86702,6	31586,3	13148,0	97777,9	51896,8	5193,6	48686,2	49346,5
Hard deciduous	17469,5	434,8	1236,4	127,7	456,0	2177,1	568,2	395,3	2713,4	1067,2	716,1	3467,7	1474,7	294,3	1541,1	799,5
Soft deciduous	123187,1	15071,7	21250,9	2549,0	10477,3	23849,7	4818,0	6086,1	16837,1	3709,9	2524,0	7650,1	1941,1	968,9	3746,3	1707,0
European-Ural part	of the Russian	Federatio	n													
Coniferous	88090,6	6042,9	10183,0	543,3	3608,9	8719,6	674,5	3256,1	13493,9	1334,1	1625,1	20262,2	3576,5	452,8	9388,7	4929,0
Hard deciduous	5106,5	420,6	1155,7	98,0	348,9	1357,1	110,8	184,6	845,9	90,9	48,5	291,7	38,2	22,3	83,1	10,2
Soft deciduous	47579,8	12041,6	12799,1	561,1	4634,5	7013,1	498,1	1892,0	3363,7	337,1	560,1	1397,5	319,8	212,7	1131,3	818,1
Asian part of the Russian Federation																
Coniferous	416225,2	3151,4	9254,2	2178,4	8796,6	38542,0	11955,2	13071,8	73208,7	30252,2	11522,9	77515,7	48320,3	4740,8	39297,5	44417,5
Hard deciduous	12363,0	14,2	80,7	29,7	107,1	820,0	457,4	210,7	1867,5	976,3	667,6	3176,0	1436,5	272,0	1458,0	789,3
Soft deciduous	75607,3	3030,1	8451,8	1987,9	5842,8	16836,6	4319,9	4194,1	13473,4	3372,8	1963,9	6252,6	1621,3	756,2	2615,0	888,9
Forest regions of th	e Russian Fede	eration														
Coniferous	73291,0	2448,8	3843,9	226,9	2893,9	6919,2	557,0	3034,4	12648,7	1275,0	1559,2	19828,8	3523,5	428,1	9222,9	4880,7
Hard deciduous	476,5	3,4	14,5	1,0	14,2	107,6	15,1	13,2	216,3	28,5	1,5	45,2	9,2	0,0	4,6	2,2
Soft deciduous	30708,0	7084,0	5322,5	258,4	3784,6	4928,0	346,3	1734,5	2834,7	262,9	528,4	1236,8	280,7	207,5	1088,9	809,8
Non-chernozem zor	ne of the Kussi	an Federai	tion						10000.0	1000.1				4.00.0		1000.0
Coniferous	84079,0	4864,6	8502,2	445,3	3412,3	8222,5	611,6	3205,8	13338,0	1307,1	1616,1	20222,5	3569,1	452,2	9382,0	4927,7
Hard deciduous	615,2	د,81	311,5	23,6	22,9	146,2	14,3	2,1	11,8	0,7	0,0	0,6	0,0	0,0	0,0	0,0
Soft deciduous	39133,9	10389,0	10408,1	395,0	3897,7	4892,5	290,6	1755,1	2654,6	239,5	542,2	1273,0	282,6	208,2	1094,8	811,0
Baikai lake basin	11001.0	15.5	54.5	10.6	050.0	1074.0	000.0		4402.0	1111.0	205.5	1000.0	(11.7	40.4	050.0	194.0
Soft degidneng	11231,0	12,2	24,6	10,5	208,7	12/4,8	203,3	000,2	4492,9	1111,0	200,8	1609,3	011,7	43,4	339,3	1/4,2
Son deciduous Shamlina amund I	2083,5 Daileal lalea	12,9	21,0	2,1	180,0	447,7	00,9	409,5	077,8	111,2	55,0	102,0	۵,۵۵	7,9	52,8	11,0
Coniferous	1692 6	50	125	22	65.6	219.4	41.0	100.0	182.4	112.2	54.2	249.0	07.0	20.0	109.0	70.2
Soft deciduous	1065,0	ے,د دع	2,21	4,1	0,00 /00	210,4 90.9	41,0	144,4	480,4	112,5	4,2 10 0	246,9 40.0	97,0	∠0,8 ≲1	140,4	10,2
Son decidious	411,9	0,0	0,1	0,7	47,0	00,8	7,0	47,4	00,6	10,2	19,0	40,2	د,11	2,1	20,9	7,0

Source:

http://www.iiasa.ac.at/Research/FOR/forest_cdrom/english/for_fund_en.html (From Roslesinforg, 2003, VNIILM, 2003)

159

🗃 Siteindexkalkyl 090323																	
	A	В	С	D	E	F	G	H	∎E		К	<u> </u>	M	N	0	Р	Q
1		culati	on d	of th	e lo	ng r	un s	sust	aina	ble	pro	duc	tion	lev	el		Table 9
2				Distrib	ution of f	orests b	v relativ	e stocki	ng and si	ite index	10 ³ ha						
3				201001		010000	,				,						
4	Subjects of RF	cts of RF Total Site index															
5	groups of main	area	I	I and highe						IV	<u>*</u>		V		V	a and lowe	r
6	forest forming	concered		1 000 10010				Distri	oution of fo	rest area hu	z relative st	neking	1.00				
7	species	hy forest	10-08	07-05	04-03	10-08	07-05	04-03	10-08	07-05	04-03	10-08	07-05	04-03	10-08	07-05	04-03
8	species	vegetation	1.0 0.0	0.7 - 0.5	0.4-0.5	1.0 0.0	0.7 - 0.5	0.4-0.5	1.0 0.0	0., 0.5	0.4-0.5	1.0 - 0.0	0.7 - 0.5	0.4 - 0.5	1.0 0.0	0.1 - 0.5	0.4-0.5
9	Russian Federation	, ogotanon	2			-	2 2				0				2		· · · · · · · · · · · · · · · · · · ·
10	Coniferous	504315.8	9194.3	19437.2	2721.7	12405.5	47261.6	12629.7	16327.9	86702.6	31586.3	13148.0	97777.9	51896.8	5193.6	48686.2	49346.5
11	Hard deciduous	17469.5	434.8	1236.4	127.7	456.0	2177.1	568.2	395.3	2713.4	1067.2	716.1	3467.7	1474.7	294.3	1541.1	799.5
12	Soft deciduous	123187,1	15071,7	21250,9	2549,0	10477,3	23849,7	4818,0	6086.1	16837,1	3709,9	2524,0	7650,1	1941,1	968,9	3746,3	1707.0
13			1							2				1	1		
14	Sum	644972.4	24700.8	41924.5	5398,4	23338,8	73288,4	18015,9	22809,3	106253,1	36363,4	16388,1	108895,7	55312,6	6456,8	53973,6	51853,0
15	Sitesum				72023,7			114643,1			165425,8			180596,4			112283,4
16	Prod				9.0			6.0			4,5			3.4	(2.0
17	Total Prod	2919082.6	8		648213.3			687858.6			744416.1			614027.8			224566.8
18					,-		1										
19							-							-			
20			-														
21	European-Ural part	of the Russian	Federatio	n													
22	Coniferous	88090.6	6042.9	10183.0	543,3	3608.9	8719.6	674.5	3256.1	13493.9	1334.1	1625.1	20262.2	3576.5	452.8	9388.7	4929.0
23	Hard deciduous	5106.5	420.6	1155.7	98.0	348.9	1357.1	110.8	184.6	845.9	90.9	48.5	291.7	38.2	22.3	83.1	10.2
24	Soft deciduous	47579,8	12041.6	12799.1	561.1	4634.5	7013,1	498.1	1892.0	3363.7	337,1	560,1	1397.5	319,8	212.7	1131.3	818,1
25							-	2.000				0.000		e e e e e e e e e e e e e e e e e e e			
26	Sum	140776.9	18505.1	24137.8	1202.4	8592.3	17089.8	1283.4	5332.7	17703.5	1762.1	2233.7	21951.4	3934.5	687.8	10603.1	5757.3
27	Sitesum				43845,3			26965.5			24798,3	1000		28119,6	0.000		17048,2
28	Prod				9.0			6.0			4.5			3.4			2.0
29	Total Prod	797696.1			394607.7			161793.0			111592.4			95606.6			34096.4
30			1. A	1						ŀ					S	ŝ	
31	Asian part of the Ru	ıssian Federati	ion			-	0			1	()()			1			
32	Coniferous	416225.2	3151.4	9254.2	2178.4	8796.6	38542.0	11955.2	13071.8	73208.7	30252.2	11522,9	77515.7	48320.3	4740.8	39297.5	44417.5
33	Hard deciduous	12363.0	14.2	80.7	29.7	107.1	820.0	457.4	210.7	1867.5	976.3	667.6	3176.0	1436.5	272.0	1458.0	789.3
34	Soft deciduous	75607,3	3030,1	8451,8	1987,9	5842,8	16836,6	4319,9	4194,1	13473,4	3372,8	1963,9	6252,6	1621,3	756,2	2615,0	888,9
35							-										
36	Sum	504195,5	6195,7	17786,7	4196.0	14746.5	56198.6	16732.5	17476.6	88549,6	34601.3	14154,4	86944,3	51378,1	5769.0	43370,5	46095.7
37	Sitesum				28178,4			87677,6			140627,5			152476,8			95235,2
38	Prod				9.0			6.0			4.5			3.4			2.0
39	Total Prod	2121386.5	8		253605.6			526065.6			632823.8			518421 1			190470.4
40		2121250,5			,0		1			1				,1	8. A		
41	-			-													
42	Index (Jonson)		I	П	III	IV	V	গ	VII	VIII							
43	m3sk/ha.vear		10.5	8.0	6.0	4.5	3.4	2.5	1.8	1.2							
44	Source																
45	http://www.skatte	verket se/ratt	sinformati	ion/allmar	narad/ald	rear/1997	/1997/rev	s199712s	4 18e1b	10334ebe	8hc80005	139 html					
46	intp.mmm.ondite	renter contait	onnormati	on on the	inter or or or or o	1001/1001	10011101	01001120		10004000	0000000	100.mm					

Partial Russian Forest Data Table												
Prepared by Peter Lohmander 2010-08-22												
Original data sources:												
© Roslesinforg, 2003	lesinforg, 2003 © VNIILM, 2003.											
Region	Forest	Stock	Total									
	Land average increment											
	of major forest											
	forming											
			species, M m3	m3perha	incperha							
Russian Federation	882975,2	82130,1	993,82	93,01518321	1,125535576							
Moscow oblast	1973,8	410,77	6,68	208,1112575	3,384334786							
Krasnoyarsk Kray	55038,1	7795,6	78,5	141,6400639	1,426284701							
Irkutsk oblast	64610,5	9059,08	94,71	140,2106469	1,465860812							
Tomsk oblast	19282,3	2779,52	31,31	144,1487789	1,623768949							

Aggregated information has been prepared by State Enterprise "Roslesinforg" (author team V.F. Fomchenkov, V.V. Sdobnova, N.K. Danilov, S.V. Danilova, G.V. Kurdina, and T.F. Beljakova) based on data of State Forest Account, presented by regional agency of state forest management. Data have been published in V.F. Fomchenkov *et al.*, *Forest Fund of Russia (data of State Forest Account, state by January 1, 2003)*, Reference Book, Moscow, VNIILM (All-Russia Research Institute of Forestry and Mechanization), 640 pp. [in Russian].

Growth comments:

- In the area on the map, present growth is reported to be about 1.5 m3/year.
- Site index tables in Russia seem to give potential growth about 3 times higher than reported growth.
- Growth potential on average forest land is 3.6 m3/year according to site index tables.
- 3.5 m3/year would give sustainable growth and harvest of 1 050 M m3/year (or 2 100 TWh/year)

Optimization

(Continuous cover **or** final fellings with reforestation. Irrespective of method, the harvest volumes per hectar are given with respect to the area of advancement. The growth assumption made here is far below the production potential.)

Growth per ha = 2.5 m3/year

- First harvest = 50 m3/ha
- Later harvests (20 year intervals)= 2.5*20
 = 50 m3/ha

Observation:

It is possible to increase the growth considerably. Then, the optimal sustainable harvests also increase.

Costs and profits etc.

• The profit will probably be higher than the calculated profit .

Reason:

• The costs of harvest operations, road investments etc. are assumed to be the same as in Sweden. This probably overestimates these costs considerably. Average wages are considerably lower in Russian federation but on the other hand, the labour efficiency is higher in Sweden in many cases.

Numerical optimization (VERSION 1)

! INTERNAT7.lng; ! Peter Lohmander 2010_08_23;

MODEL:

SETS: time/1..50/:x,h,Prof,d; ENDSETS

rate = .05; h_init = 100; h(1) = h_init; !Import price in Europe (Chips import price, Sweden, 2009), 50 EURO per m3; IMPP = 50;

!Harvest cost (including terrain transport), 6.7 EURO/m3 (final fellings) (Sweden 2006), 13.1 EURO/m3 (thinnings).

(Exchange rate = 10 SEK/EURO);

HARVC = 10;

Investment in reforestation, precommercial thinnings, fertilization, maintenance and new investments in roads etc are about 45% of harvest costs in Sweden (2006);

IMC = HARVC/2;

!Transport cost (mainly railroad transport) from road or railroad in central Russian Federation to central Europe.

```
Railroad transport cost:
```

3000 km * 0.005 \$/tonkm * 0.8 ton/m3 = 12\$/m3 = 9.28 EURO/m3. ;

TRPC = 15;

NETP = IMPP - HARVC - IMC - TRPC;

```
dNETPdh = -.004;
@FREE(dNETPdh);
```

@FOR(time(t): d(t)=@exp(-rate*t));

max = PresV;

@for(time(t): Prof(t) = (NETP +
 dNETPdh*h(t))*h(t)*1000000);

@for(time(t)| t#LE#20 : h(t) = 15*x(t));

@for(time(t)| t#GT#20 #AND# t#LE#40 :
 h(t) = 15*x(t) + 15*x(t-20));

@for(time(t)| t#GT#40 #AND# t#LE#60 :
 h(t) = 15*x(t) + 15*x(t-20) + 15*x(t-40));

PresV = @sum(time(t): d(t)*Prof(t));

[totd] @sum(time(t):x(t)) <= 1000;</pre>

@for(time(t)| t#LT#50 : h(t+1) < 1.2*h(t));

@for(time(t)| t#LT#50 : h(t+1) > 0.98*h(t));

!Sustainable harvesting constraint; @for(time(t)| t#GT#30 : h(t) > 750);

toth = @SUM(time(t): h(t))/50; tote = 2*toth;

DATA: @OLE('internat7.XLS')=x,h,Prof, h_init, rate, PresV, toth, tote; ENDDATA

end

The Optimal Present Value

PresV

1,64032E+11

(Approximately 164 billion Euro)

Toth M m3 (harvest/year) 649,1610045

Tote TWh (energy/year)

1298,322009

CENTRAL QUESTION:

Where can Europe find 2 563 TWh of "new" renewable energy ?

CENTRAL QUESTIONS:

Would it be profitable to deliver this renewable energy to Europe?

Numerical optimization (VERSION 2) (Growth = 3.5 m3/year)

! INTERNAT7.Ing; ! Peter Lohmander 2010_08_23;

MODEL:

```
SETS:
time/1..50/:x,h,Prof,d;
ENDSETS
```

```
rate = .05;
h_init = 100;
h(1) = h_init;
```

!Import price in Europe (Chips import price, Sweden, 2009), 50 EURO per m3; IMPP = 50;

!Harvest cost (including terrain transport), 6.7 EURO/m3 (final fellings) (Sweden 2006), 13.1 EURO/m3 (thinnings).

(Exchange rate = 10 SEK/EURO);

HARVC = 10;

Investment in reforestation, precommercial thinnings, fertilization, maintenance and new investments in roads etc are about 45% of harvest costs in Sweden (2006);

IMC = HARVC/2;

!Transport cost (mainly railroad transport) from road or railroad in central Russian Federation to central Europe.

```
Railroad transport cost:
```

3000 km * 0.005 \$/tonkm * 0.8 ton/m3 = 12\$/m3 = 9.28 EURO/m3. ;

TRPC = 15;

NETP = IMPP - HARVC - IMC - TRPC;

```
dNETPdh = -.004;
@FREE(dNETPdh);
```

@FOR(time(t): d(t)=@exp(-rate*t));

max = PresV;

@for(time(t): Prof(t) = (NETP +
 dNETPdh*h(t))*h(t)*1000000);

@for(time(t)| t#LE#20 : h(t) = 21*x(t));

@for(time(t)| t#GT#20 #AND# t#LE#40 :
 h(t) = 21*x(t) + 21*x(t-20));

@for(time(t)| t#GT#40 #AND# t#LE#60 :
 h(t) = 21*x(t) + 21*x(t-20) + 21*x(t-40));

PresV = @sum(time(t): d(t)*Prof(t));

[totd] @sum(time(t):x(t)) <= 1000;</pre>

@for(time(t)| t#LT#50 : h(t+1) < 1.2*h(t));

@for(time(t)| t#LT#50 : h(t+1) > 0.98*h(t));

!Sustainable harvesting constraint; @for(time(t)| t#GT#30 : h(t) > 1050);

toth = @SUM(time(t): h(t))/50; tote = 2*toth;

DATA: @OLE('internat7.XLS')=x,h,Prof, h_init, rate, PresV, toth, tote; ENDDATA

end

The Optimal Present Value

PresV

1,97976E+11

(Approximately 198 billion Euro)

Toth (M m3/year) 873,9932054

Tote (TWh/year) 1747,986411

CENTRAL QUESTION:

Where can Europe find 2 563 TWh of "new" renewable energy ?

CENTRAL QUESTIONS:

Would it be profitable to deliver this renewable energy to Europe?

Observation

If the growth would be 4,271666 m3/year, Then, 2 563 TWh would be possible to deliver, each year, for ever, from this area.

There are enormous options in the Russian forest sector if we optimize the dependent activities!

GENERAL SUGGESTIONS:

Investigate, in detail, the most rational ways to improve the total solution.

Some of the important parts to investigate are growth under different treatments and costs of harvesting and transport under different designs of the total operation.

Then: Follow the optimized plan!

This way, Europe will get the desired amount of renewable energy, the world climate improves and considerable profits are generated!

Conclusions

- In Russian Federation and Canada, the potential sustainable forest harvesting levels are several times higher than present harvesting.
- These biomass resources may be used as a sustainable source of energy in large regions of the world, such as central Europe. EU has the target of 20% renewable energy in the year 2020.
- The general structure of dynamic quadratic programming models for optimal coordinated expansion of sustainable forest and bio energy supply chains, infrastructure and industrial plants has been studied.
- Alternative dynamic quadratic programming models have been described.
- Typical dynamic solutions have been derived for a region in low resolution.

RISK and ADAPTIVE OPTIMIZATION

Thank you for listening! Questions? Peter Lohmander

Thank you Joe Roise for taking me to NCSU!

Peter

The Economics of Forest Biomass and a Rational European Carbon Policy

Peter Lohmander

Professor of Forest Management and Economic Optimization, Swedish University of Agricultural Sciences

http://www.lohmander.com/

NCSU, North Carolina State University,

Pulp and Paper Laboratory, Room 2221

Thursday March 22nd 3:30-4:30 PM

Audience: Forestry and Forest Biomaterials Faculty and students

