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RECENT ADVANCES IN GENERAL GAME THEORY AND APPLICATIONS
By Peter Lohmander

* In part 1 of this presentation, the two player zero sum games with
diagonal game matrixes, TPZSGD, are analyzed.

* Many important applications of this particular class of games are
found in military decision problems, in customs and immigration
strategies and police work.

* Explicit functions are derived that give the optimal frequences of
different decisions and the expected results of relevance to the
different decision makers.
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* Arbitrary numbers of decision alternatives are covered.

* It is proved that the derived optimal decision frequency formulas
correspond to the unique optimization results of the two players.

* It is proved that the optimal solutions, for both players, always lead to
a unique completely mixed strategy Nash equilibrium.

* For each player, the optimal frequency of a particular decision is
strictly greater than O and strictly less than 1.
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* With comparative statics analyses, the directions of the changes of
optimal decision frequences and expected game values as functions
of changes in different parameter values, are determined.

* The signs of the optimal changes of the decision frequences, of the
different players, are also determined as functions of risk in different
parameter values.
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* Furthermore, the directions of changes of the expected optimal value
of the game, are determined as functions of risk in the different
parameter values.

* Finally, some of the derived formulas are used to confirm earlier
game theory results presented in the literature. It is demonstrated
that the new functions can be applied to solve common military
problems.
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* In part 2 of this presentation, four military decision problems,
common and relevant to typical army and ranger units, at platoon,
company and battalion levels, are described and analysed.

* It is found that fundamental game theory and methods can be used
to determine optimal decisions.

* The optimal decisions are derived as mixed strategy Nash equilibria,
via manual methods.
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* It is found that considerable improvements of the expected outcomes
of typical decisions can be obtained in a way that does not require
high investment costs.

* It is argued that the methodology to some degree should be included
in the education of all Swedish military officers, in particular in the
army and ranger units intended for special operations.

* In part 3, stochastic dynamic extensions of part 1 will be defined.



References to this presentation:

 Lohmander, P., Optimal decisions and expected values in two player zero sum fames
with diagonal game matrixes, - Explicit functions, general proofs and effects o
parameter estimation errors, International Robotics & Automation Journal, Volume 5,
Issue 5, 2019, pages 186-198.

https://medcraveonline.com/IRATJ/IRATJ-05-00193.pdf
http://www.Lohmander.com/PL files 191114.zip

 Lohmander, P., Four central military decision problems, General methods and solutions,
The Rolylag ngdiSh Academy of War Sciences, Proceedings and Journal, No. 2/2019,
pages -134.

http://www.Lohmander.com/PLRSAWS 19 sum.pdf
http://www.Lohmander.com/PLRSAWS 19 |pg.zip

 Lohmander, P., Applications and Mathematical Modeling in Operations Research, In:
Cao BY. (ed) Fuzzy Information and Engineering and Decision. IWDS 2016. Advances in
Intelligent Systems and Computing, vol 646. Springer, Cham, 2018 Print ISBN 978-3-319-
66513-9, Online ISBN 978-3-319-66514-6, eBook Package: Engineering


https://medcraveonline.com/IRATJ/IRATJ-05-00193.pdf
http://www.lohmander.com/PL_files_191114.zip
http://www.lohmander.com/PLRSAWS_19_sum.pdf
http://www.lohmander.com/PLRSAWS_19_jpg.zip

References to this presentation (continued):

Lohmander, P., Applications and mathematical modeling in operations research,
KEYNOTE, International Conference on Mathematics and Decision Science, International
Center of Optimization and Decision Making & Guangzhou University, Guangzhou, China,
September 12-15, 2016 http://www.Lohmander.com/PL KEYNOTE MATH 2016.jpg
http://www.Lohmander.com/PL ICODM 2016 KEY.pptx

http://www.Lohmander.com/PL ICODM 2016 KEY.pdf

http://www.Lohmander.com/PL ICODM 2016 KEY WAPER.gdf
M 2016 KEY PAPER.docx

http://www.Lohmander.com/PL ICODM 2

O

http://icodm2020.com/en/

Presentation of Peter Lohmander

Bauer, M., Peter Lohmander, [IASA,
International Institute for Apﬁlied Systems Analysis,
http://www.iiasa.ac.at/web/home/about/alumni/News/20181204 lohmander.html

http://www.Lohmander.com/PL 1IASA 18.pdf

References on related topics

http://www.lohmander.com/Information/Ref.htm



http://www.lohmander.com/PL_KEYNOTE_MATH_2016.jpg
http://www.lohmander.com/PL_ICODM_2016_KEY.pptx
http://www.lohmander.com/PL_ICODM_2016_KEY.pdf
http://www.lohmander.com/PL_ICODM_2016_KEY_PAPER.pdf
http://www.lohmander.com/PL_ICODM_2016_KEY_PAPER.docx
http://icodm2020.com/en/
http://www.iiasa.ac.at/web/home/about/alumni/News/20181204_lohmander.html
http://www.lohmander.com/PL_IIASA_18.pdf
http://www.lohmander.com/Information/Ref.htm

First, we start with some very concrete decision
problems, with only 2 and 4 dimensions.

Later, we will generalize the findings to
arbitrary numbers of dimensions.
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In this paper, the two player zero sum games with diagonal game matrixes, TPZSGD,
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Beslutsproblem

Vagval vid uppmarsch och
underhallstransporter

Val av plats for eldéverfall vid
fordrojningsstrid

Positionering av bevaknings- och
stridspatruller vid stabsplats

Val av utgangsgruppering for spaning
mot, och stdrande av, fientlig
stabsplats

Decision Problems

The selection of roads for transport
when enemy forces may prepare
attacks along different roads with
different expected outcomes,

The selection of roads where attacks
on enemy transports should be
prepared,

The positioning of guard squads and

The positioning of intelligence,
reconaissance and sabotage groups.
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Observation:

If we can be sure that, in optimum, all decisions have stricly positive probabilities, then we know that:
E o X1C11 o X2C22

Then, if the number of possible decisions is 2, we have:

E =xC, =1-X)C,, \x2 (1-x)=|1- Car
B C; +Cy
%Gy = Cp —C0X
C; TGy _ Co,
Ciy +Cp Gy +Cy

X
N
|l

Xl(Cll + sz) = Cy,

Particular
decision
rules

30



Observation:

When there are exactly two possible decisions, and the optimal probabities are strictly positive,
we may calculate the expected value of the game in two ways. The results are identical.
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Sektor 1

P11=0.8

Sektor 4

P44=0.9

Sektor 3

P33=0.2
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c =0.i=L....n. j=1.2....n (2.1)

c..! =g.>0.i=L..n.j=L2....n (2.2)




Let A; denote dual variables. The following Lagrange function 1s
defined:

b

H H
L=xy+ /lo{l—lex_,- |+ Elﬁj(gfxf ~xp) (2.1.5)

The following derivatives will be needed in the proceeding
analysis:

n
L T xz0 (2.1.6)
(MU i=1
dL .
Al 7]
—=1-3X A <0 (2.1.8)
cf.*ro i=l
d_‘[: .g'l.—;{O{_:{]j: T (2.1.9)



Karush Kuhn Tucker conditions in general problems

variables and constraints. Furthermore. the elements c..

are 1not

In general problems. we may have different 11111]113&17 of decision

necessarily zero (Table 1).

Tli=j

Table | Karush Kuhn Tucker conditions in general maximization problems

A =0 Vi
v
v; =207

dL _
a2,

dL
dx

<0V

id—izow
dL
TJEZOIITJ
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Particular conditions in problems that satisfy (2.1) and
(2.2)

Note that in these problems. i = j in all relevant constraints.

>0V 1.
0 2.1.10
I - ovi (2.1.11)
d

ifj—i:{)‘?’f (2.1.12)
x; 20 7i (2.1.13)
I _ovi (2.1.14)
(i*r.,-

L 0 vi (2.1.15)



HE

Proof 1: Proof that Xg > 0:

(2.1.2) and (2.1.4) make it feasible to let x; >0.7=1...n.
(2.2)says that g. >0.,i=12,...n .
When g,x; >0.7=1..n . (2.1.3) makes 1t feasible to let x, >0.

(2.1.1) states that we want to maximize X, - Let stars indicate

optimal values.

L " L ::k
Hence. when optimal decisions are taken. x5 =x5 >0 .
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Proof 2: Proof that .Tf =0.i=1.....n:

dL
(2.1.7)says that —=g.x, —x, =20.i=L....n

(f/?_? 1 1

Proof 1 states that x, >0 .(2.2) says that g;:>0.i

Hence. X; =X; > 0.i=0.....n.

-----
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equation system.

(x; >0.i=0....n)A (2.1.15) = Ao gzl
* dTU rf.*rf
- {(2.1.16)& :(2.1.1?)} |
H
L sa=0 (2.1.16)
(f.*r{] i—1

E:;ﬁgf_iozﬂ*jzl ..... 7 (2.1.17)
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Proof 4: Proof that A >0.i=0....n .
(2.1.16) = 3|, -

Hence. at least for one strictly positive value 7. A;is strictly
greater than zero.

(EII‘?}D ﬂ}{]) M (gi’ }D.."‘:l.....ﬂ) AN (21]7) > 2_0 =) .
| =04

Ao >0 (2.1.18)
(2.1.17) A (g, >0.i=L..n) A (2.1.18) = (4 >0.i=L..n)

A:>0, i=1..n (2.1.19)
(2.1.18) A (2.1.19) = (4 >0.i=0....n)

H
A >0.i=0....n (2.1.20)
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Ha
Proof 5: Proof that X; i =1.....n . can be determined from a linear

equation system.

(4;>0.i=0....n)A (2.1.12) =

{ AL _o. AL _
_diﬂ dA;
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Determillatiun of explicit equations that give all

values: x; .i=0....n:

X
v="Y i=l..n (2.1.23)

D x, =1 (2.1.24)

n X
0 (2.1.25)

= (2.1.26)
g Y
|
>
i=1&;
. -1
Xy = {Zg}._l} (2.1.28)
i=1

ER —1 I 1 )
X; =g; 2 &g I i=L...n (2.1.29)



Determination of explicit equations that give all

ES
values:ﬂ.,- Li=0,....n:

(2.1.17) = (2.1.30).

... 1

(2.1.30)

(2.1.31)

(2.1.32)

(2.1.35)

(2.1.36)
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Observations:

(2.1.37)

(2.1.38)
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The minimization problem of RED

We are imterested in the solution to min y;, . The objective function
1s formulated as max (—_1-*0 ) . The frequences of the different decisions,

Iare y; .
max (_-"’U ) (2.2.1)
5.1,
v, = 1 {222}
i=1
Vo= gv,.i=L..n (2.2.3)

v.z0.i=1..n (2.2.4)
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Proof that y, >0
(222) = (2.2.5).

f‘li:’in, ¥;i>0 (2 2 5)
g >0.i=L...n (2.2.6)
A
(223) A (22.5) $ (22.6) > (2.2.7)
Vo 2 >0 (2.2.7)

Let g denote dual variables. The following Lagrange function is
defined for RED:

Ly==vy+ 14 {Z Vi —
i=1

These derivatives will be needed in the analysis:

+Z,u —g.v,) (2.2.8)

g

d H
5 120 (22.9)
dJuD i=1
dL
L=y, —gy;20.i=L...n (2.2.10)
d L.
dL Z
—2:_14-2;;?.50 (2.2.11)
dv, i=1
ﬂ = Uy — g, =0.1=1..n

v, (2.2.12)
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Proof that y, >0.i=0....n

According to (2.2.1), we want to maximize —y, , which implies
that we minimize y, .

(222) = D ¥y =1
i=1

(224) = y.=0.i=L....n

Let us start from an infeasible point. origo. and move to a feasible
point in the way that keeps y,as low as possible. Initially, let

(J-’l ..... v, ) =(0.....0) . According to (2.2.2), this point is not feasible.
(2.2.3) = min 1{]\ =0,
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Now, we have to move away from the infeasible point

(1., )=1(0,...,0) . We have to reach a point that satisfies
f
ZJ-} >1 without mncreasing y, more than necessary. To find a point
i=1

that satisfies (2.2.2). we have to increase the value of at least one of

the j-}‘{.e{l_"_ ) Select one arbitrary index H . To siumplity the

1=k <n
exposition, we let k=1. According to (2.2.3): If we increase y,
by dy,, miny, increases by g,dy,.as long as dy, =0.i=2.....n.

Hence, dy, = g,dv, . Let z =dy, = g,dv, .
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However. when dy; >0, we may also partly increase
v, .i=2....n without increasing dy, above z. This follows from

(2.2.3) and (2.2.10). Since we want to satisfy Z_v‘,. =1, we want to
i=1

increase y, .7i=2....n as much as possible, without increasing dy,
above z . Hence, we select:

gdv, =z=gdv,.i=2.....n (2.2.13)

dv, =Sy, i=2...n (2.2.14)
g;

(dy; >0)n (g, >0.i=L..n)=dy,>0.i=2....n  (2.2.15)
Since we started in origo, we have
v.,=dv,+0>0.i=1,..n (2.2.16)
We already know that ‘1-'; >y, > 0 . Hence,.

v, >0,i=0...n (2.2.17)
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Observation: The following direct method can be used to solve

the optimization problem of RED.

First, remember that yox = dvox + 0 =z . We may directly determine

the optimal values of ‘1-',.* =>0.7=0,....,n without using the Lagrange

function and KKT conditions. in this way:

i;;. = (v, +0) +(dvy +0).cc+(dy, +0)) =1 (2.2.18)

b
D=yt y,)=1

i=1
A kY
z (g = z
—+{ﬂ— +...+{&—} =1
&1 £ 8 En &1 )

pR =[:+:+...+:J:1
i=1 g1 £ £n

il g £ En )
o 1
ng b= ~
i=1 =

(2.2.19)

(2.2.20)

(2.2.21)

(2.2.22)
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4

(2.2.2

(2.2.25)
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Proof that 4 .i=0...n can be solved via a linear

equation system and that x4 >0.i=0....,

. * . . * .
Since y, =>0.i=0,....n .wemaydeterminethat /. >0.7=0.....n

via a linear equation system.
¥; aL, _ =0.i=0...n [A(»;,>0.i=0....n) > aL, =0.7=0.....m
ff.""r ('ﬁ'} ).
dL,
___1_|_Z‘H =) (2226)
dv,
ﬁ:,u,:_—,u;.g;,rf.:I[}._f':l._....ir*e (2.2.27)
dv,
(2226)= af\lﬁimwﬂ (2.2.28)
(g, >0.i=L...n)A(2227) A (2.2.28) = 1y >0 (2.2.29)
(g;,>0.i=L...n)~n(2227) A (2229) = (14, >0.i=1..n)
(2.2.30)
(2.2.29) A (2.2.30) = (4, >0.7i=0.....n) (2.2.31)
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: 4

Proof that . .i=0...n can be solved via a linear

equation system and that y, >0.i=0....n.

. * . . * .
Since g, >0.i=0.....n .wemaydetermmethat y. >0.7=0.....n
via a linear equation system.

dL,

—==0.i=0...n |[A(1;>0.i=0,..n)=>| —==0,i=0....n
dz”f d:“.i" A

d H
duy, 42

dL,
==y, —g;v;=0.i=1L...n (2.2.33)

d i,

(2.2.32) = il 1 o (22.34)

(g, >0.i=1...n)~n(2.233) =y, >0 (2.2.35)
(g, >0.i=1... n)n(2.2.35) = (y;>0.i=1....n) (2.2.36)
(2.235) A (22.36) = (v, >0.i=0....n) (2.2.37)
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Determination of explicit equations that give all
values: ‘1-':_, i=0.,...n:

(2.2.33) = (2.2.38).

Vv
vi==C.i=L..n (2.2.38)

(2.2.32) = (2.2.39).

D= (2.2.39)
Z;izl (2.2.40)
i=1 &i
Zi :i. (2.2.41)



(2.2.42)

iy
=

(2.2.4

(2.2.44)
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Determination of explicit equations that give all

3 .
values: ;. ., i=0,..n:

(2.2.27) = (2.2.45).
1L :ﬁ,le....,n
&;
(2.2.26) = (2.2.406)

i i =1
i=1

n

> el

- o
i=1 &i

(2.2.45)

(2.2.46)

(2.2.47)

(2.2.48)

(2.2.49)

(2.2.50)

(2.2.51)
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Observations:

-1
.FD# — ,”:]t = EE_IJ (2.2.52)
1

|
]
v =u —gf_l{qu_l gdi=L..n  (22.53)



New General Results




Generalized Observations:

-----
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Sensitivity analyses

First, the sensitivity analyses will concern these wvariables:

k4 k4 k3 W

Xg =49 =V, =4, . How do these variables change under the
influence of changing elements in the game matrix?
) -1
Observation: x, =1, =y, =, = -
PXg =y =Vo =ty =| 2.8
i=1
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d. d”:
Proof that 20~ 0 A Yg <0.
g; dg;
- -1
X, =[ gﬁ] (2.3.1)
i=1
* -2
f??-T.:} 4 -2
=-D| > g —g. (2.3.2)
dg, i=1 ( £ )
® - -2
GONIPEETE S R (2.3.3)
dg; - i T

2_* n n -3
a IE = _255_3{2&_1} "‘gr_z(_z) ng_lJ (_l)gr_z (2.3.4)
i=1

2.* n \ 2 n -
d TE - 24:::_3{2\8‘?_1 l_gr_l[zgr_l (235)
dgr‘d i=1 A i=1 s
d’x, 1 %\2 .
d; =—2¢,7 (%) (1-%) (2.3.6)
i - . dEIDt "
(0<x <1)n(g>0)= <0 (2.3.7)
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New General Results




. ® . . . . .
Observation: x, 1s a strictly increasing and strictly concave function
of each g;.From the Jensen inequality, it follows that increasing risk
. . x® .

in g, will reduce the expected value of x, . Compare Figure 1.
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Second. the sensitivity analyses will concern these variables:

& 3 B 3 & x

x, =A =y, =4 .i=1.....n. How do these variables change under
the mfluence of changing elements in the game matrix?

\ —1
® e e *

Observation: x, =4 =y, =1 =g qu_l L
g=1

|
[—
n

f v T

Iy
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:

dv, d’x.
Proof that 27~ 0 A T; =0.i¢ {1._...._nr} .
dgf dgf

g= /

(2.3.8)

(-g,7) (239

. -1 -1
dx; Y Y -
=g [ g, } -1+g [ g, (2.3.10)
1 q

(2.3.11)
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(ﬂf-:}ﬂ)ﬂ({) c:::x:e::l): 3 <0 (2.3.12)

T g (1) (ot (1) ) -
(2.3.13)

d*x, - s( % .

n’g-z - g. (‘{'E [T‘, —1)—(:'(‘,. (xf —1))(1’ —1) X, X (T —1))
(2.3.14)

dzx-* 2 * =\ 2 2

dg-; _gi—z((ri) —X; —X; ((1}) —2x +1! [ ) [T —I)J
(2.3.15)
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GTEITT.* e .y ((T )2 _2:{.* +1]
dgﬁ? i i i ;
d-. : ~ )
(fg; =2g; ET; (‘i' —1)
(g, =0)A ({] <x, < 1) — ‘;;:’; :

(2.3.16)

d’x, :_gj‘g[—z(.rf’)E+4(rf)2—2-1’: [CERT)

(2.3.18)

(2.3.19)

(2.3.20)
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New General Results




Observation: :q,.* 1s a strictly decreasing and strictly convex function
of g. . From the Jensen inequality, 1t follows that increasing risk in g,
will increase the expected value of x; . Compare Figure 2.
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ax,
Proof that e =0

dg, dg;”

crz|:'atﬁr i=1
=
df;tt 1 5 i} 4 - . R
= gr & o (2.3.23)
ior
Sili=k i=l
dx; .
(g, >0.m=1..n))= E -0 (2.3.24)
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G‘IET ) 1 3 i " — ) n , -3 ,
AL - - . . _ _ B
> =8 | 28 ZE: +g; (=2) ZE: (‘E; )
gi"|r'=eﬁ' i=1 i—1

(2.3.25)
(fET; N 1—2 NE 15,5—1 \
~=2g;"'g, [ g J (& ){Zgi ~1| (2:3.26)
dgﬂhtk i=1 i=1 ) )
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New General Results




(??ETJE: 1 -1 * 2 e -
=2 g | x; x, —1 (2. 27)
{fgﬂfi;{ = (T ) (T ) J

T _o (2328
"fgﬂf;eﬂ;

* | . . . . .
Observation: x; 1s a strictly increasing and strictly concave function
of g. . From the Jensen inequality, 1t follows that increasing risk in g,
. * . .
will decrease the expected value of x, . Compare Figure 3.
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Numerical Example




Numerical illustration

The general definition of the following illustrating game is given
in the preceeding section. Let » =2. A very detailed background and
interpretation of this particular game, without the new functions and

proofs, is given in Lohmander (2019)."

1&g 0] (20 "
A{U gj{ﬂ } Sh

From (2.2.54) we know that:

- -1
.Tﬂt = /T_Gt — }.'Dt = ‘Hﬂt — [ ng._l] (32)

i=1
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xﬂt . the expected reward of BLUE. 1s equal to _1-*; , the expected
loss of RED. in case both optimize the respective strategies. Using the

numerical values of the elements in 4 . we get:

. 1 6
X, =——=—=1.2 3.3
TD ] 1 5 ( 'j}
- _I_ N
2 3
Hence, the expected value of the game 1s 1.2. This value 1s also
shown in Figure 4. and Figure 5. The expected value of the game is a
decreasing function of the level of risk of g;. which 1s described 1n

connection to. and illustrated in. Figure 1.
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From (2.2.55) we know that:

n

:!:_ #_ ‘:!_ t_ _1 _1
X, =A4 =), =1 =g { Eq

g=1 ¥,

i=1..n (3.4

For BLUE and RED, the optimal probabilities to select different
roads are equal. For BLUE, the optimal probability to select road 1 is
x, . Via the elements in 4 . we get:

E 4 ]_ ®

W W ]...‘lI b3
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:rlt 1s shown in Figures 6 & 7. In Figure 8. the optimal value 1s
illustrated. The expected value of :u-:ljt 1S an increasing function of the
level of risk in g, . which 1s shown in Figure 2. For BLUE, the optimal
probability to select road 2. 1s .*r;. In Figure 9. we find this value 1s
0.4. Figure 3 illustrates that the expected value of :r; 1s a decreasing
function of the level of risk m g, .

The particular results (]I; : :rlt. .r;) discussed 1n this 1n this section
were also obtained by Lohmander (2019)'* via the traditional game

theory approach of linear programming.
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Graphical illustrations
of optimal results
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x0*
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..... X0* (g2=1) = =x0* (g2=2) ——x0* (g2=3)
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x0*(E(g1)) & E(x0*(g1))

&
o

=
»

e
N

[

O
00
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o

—x0%(E(g1))

= =E(x0%*(g1))

E(gl)

----- Approximation of x0*(E(g1))
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X <
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1,2

..... x1* (g2=1) = =x1* (g2=2)

x1* (g2=3)
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x1*(E(gl)) & E(x1*(g1))

1,2

0,2

—x1%(E(g1))

- =E(x1%(g1))

3 = 5

E(gl)

----- Approximation of x1*(E(g1))
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0,9

0 1 2 3 4 5 6
gl

..... x2* (g2=1) = =x2*(g2=2)

x2* (g2=3)
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x2*(E(g1)) & E(x2*(g1))

S
00

o
N

S
L)

o
[

—x2%*(E(g1))

= -E(x2%(g1))

3 “ 5

E(gl)

----- Approximation of x2*(E(g1))
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min max  Q(X,Y;u,v,t,S,,Sg,M)

] yeY (t,Sg,U,v,m) xe X (t,S4 ,U,v,m)

(15) Z(t,S,,Sg,.M)= mIin  max st

veV (t,sg,m) uel (t,5,,m) Fr (X,y)<0V
R 1, (X,y)20Vf,
Fs, 15 (X,y)=0V13

+ > 7(N|M)Z (t+1, S p1q) (Spe t MLV, U), gy (St M, V,U), N)

V (t, S Sge, M| (0<T<T)

(16) Z(T +1s,,S5,m) =0 V(Su,Sg.M)




Stochastic dynamic games with arbitrary functions,
with and without mixed strategies

V(X,y,) = max _min { (-)+dZZf(xt+1,ym\-)V(xm,ym)} Vt|, s

GS ,C GS,, ,C
Ait a8 A2 Xt+1 yt+1

(GS,,CA)) € Ay(X)
(Gs‘zt 1CA2t) € A, (Y,)

te{0,1..,T -1
x, €{0,1,..,N
{01 N

oVt
bt

y

Lohmander, P., A Stochastic Differential (Difference) Game Model
With an LP Subroutine for Mixed and Pure Strategy Optimization,
INFORMS International Meeting 2007/, Puerto Rico,

2007 http://www.Lohmander.com/SDG.ppt 124
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General Conclusions




General Conclusions:

Game theory is necessary in order to understand and handle
relevant decision problems.

Game theory contains an enormous number of
alternative specifications.

It is essential that the most relevant approach
is defined, analyzed and used.

| hope that we can cooperate in this field in the future.

Peter Lohmander
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