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Abstract Management decisions should be based on the sequentially revealed infor-
mation concerning prices, growth, physical damages etc. Future flexibility is
valuable in a stochastic world and should be optimized. Stochastic dynamic
programming, stochastic scenario tree optimization, and optimization of adap-
tive control functions with stochastic simulation of the objective function are
relevant alternatives,
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1 INTRODUCTION

me Shoot Moth, : L. " ; 3 ; .
Economic optimization of forest management is a highly interesting area,

which covers theories from several quantitative fields and optimization
methods of all kinds. One reason for this fact is that trees grow. Trees
represent interesting biological units that form stands and forests. Growth
can be modelled at the tree level and at higher levels. The stock may be
observed and controlled over time via activities such as thinning and
fertilization. Growth, in several dimensions, is a function of the measurable
state. Hence, we may view the forest as a controllable Markov process.

8:196-218,

Future growth is affected not only by the present properties of the trees.
Wind throws, insect damages, fungi damages, rodents, moose, elephants and
other animals, changes in climate, air pollution, forest fires, and many other
factors affect forest damages and growth and the future state of the forest. In
most cases, such factors may not be perfectly predicted. Storms, fires, and
different forms of other damages may usually be regarded as stochastic.
It should also be clear that there are many different types of “stochastic
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disturbances™ of this nature. Different types of disturbances may have very
different effects on the forest state. Some disturbances will only influence
some species and leave other species unaffected. Other disturbances will
affect some parts of the trees, such as the roots or some branches. Some
damages are local and affect only one tree. Other types of damages have
spatial dimensions and influence the development of several square kilo-
metres, such as forest fire damages and wind throws.

In most places, it is very expensive to go to the forest to harvest and to
collect just one tree. We have to consider the different alternatives on a
larger scale: Is it economically optimal to harvest onc or several forest stands
in the area in this period via clear felling or should we perform partial
harvesting in the form of continuous cover forestry? We conclude that there
are mostly considerable economies of scale in harvesting and other ope-
rations. For this reason, it is seldom optimal to perform “continuous™ harves-
ting. During a time interval when you harvest in an arca, you harvest much
more than the growth during the same time interval. It would in most cases
be far too expensive to keep the harvester, the forwarder, and the labour in
the forest stand for ever. Hence, irrespective of whether you make a clear
felling or make a thinning, it is economically optimal to wait a considerable
time, usually many years, before you visit the site again in order to harvest.

When we consider stochastic events of importance to forest management
and economic optimization, we must not forget the markets. The market
value of a tree is a function of the general market conditions. If we want to
determine the economic values of trees, we have to consider the prices of
logs of different qualities and dimensions in different market places, the
prices of pulpwood and fuel wood and several other alternative wood pro-
ducts. We also have to consider the costs of harvesting and forwarding, the
capacity of the forest road network at different points in time, and the
availability and prices of trucks and labour. Clearly, in most cases the timber
producers do not control the market prices. Inventions and innovations in
process technology will change future relative prices and can, by definition,
not be perfectly predicted. If you can predict the exact properties of a future
invention. it has already taken place! Furthermore, political changes at the
national and international scales may change the markets in ways that are
impossible to predict. As a confirmation, econometrics research has not yet
been able to give us perfect price predictions covering long horizons.

Hence, if we want to address the relevant forest management problems,
we have to admit that future prices cannot be perfectly predicted. This has
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not been possible in the past and there is no reason to hope for such options
in the future. As a result. we may conclude the following:

We may view the forest management problem this way: There is a con-
trollable Markov process. The state of the forest is affected by growth and
damages that have to be regarded as stochastic. The stochastic disturbances
may have many different properties and influence the forest in different
scales. The market prices and other external conditions usually change over
time. These changes cannot be perfectly predicted and may be regarded as
stochastic processes with many different properties. There are considerable
set-up costs in harvesting and other operations. Each time you undertake
some operation, you have to move harvesters, forwarders and labour
considerable distances between objects. Hence, you visit each stand or forest
area only rarely. In the mean time, between these visits, the forest grows and
may be affected by different kinds of stochastic damages. Furthermore,
between these visits, considerable market changes may take place.

Now, it is time to take a close look at earlier attempts and new ways to
handle the forest management decisions in an economically optimal fashion.
Of course, this text cannot cover all kinds of relevant problems and app-
lications in the area. Hence, just a small number of typical and economically
important examples from forest management will be analyed in detail. The
reference list contains studies that discuss many more applications of the
presented methods and may be consulted by the reader at a later point in
time.

2 GENERAL MATHEMATICAL TOOLS
AND METHODS

Economic forest management decision problems have been addressed by all
kinds of mathematical optimization methods during the years. Faustmann
(1849) defined the present value of an infinite series of identical forest
generations. It was implicitly assumed that everything was known with cer-
tainty. A number of authors have continued in the same tradition. Johansson
and Lofgren (1985) give a survey of this field. They use a number of dif-
ferent methods in different chapters, all but onc essentially based on
deterministic derivations and optimization. During more than one century,
the dominating forest economic decision problem has been the determination
of the optimal harvest year, based on alternative deterministic assumptions.
Typically, the decision problems were solved stand by stand via one-
dimensional present value maximization. The options to simultancously
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optimize the number of scedlings per hectare. the number of thinnings,
the timing and intensity of thinnings. and the year of the final felling, were
mostly neglected. As one typical example. Johansson and Lofgren (1985)
~ present a very detailed one-dimensional analysis of the optimal harvest year

decision problem, assuming that all future forest generations will be identical
to the present.

Linear programming made optimization and coordination at higher levels
possible. George Danzig developed an efficient method for linear program-
ming problems many years before he published his well-known book.
Danzig (1963). Linear -programming rapidly became a widely used forest
planning tool, partly thanks to the development of computers and easily
available standard software. Mostly, the forest management model assump-
tions included perfect information, large numbers of forest compartments,
and long horizons. Much later. it became known that linear programming
also is a very useful tool when it is necessary to solve a completely different
type of problem with stochastic disturbances of many different kinds. See

later sections.

Bellman (1957) presented a conceptually new method: dynamic pro-
gramming. In many of the typical applications, dynamic programming is
used to optimize decisions over time under the assumption that future
parameters are known with certainty. However, dynamic programming can
also be used for many other purposes. It turns out that you may handle set-up
costs, sequential information, and adaptive decisions in a very simple and
consistent way. Ross (1983) concentrates on the very important and relevant
field stochastic dynamic programming. Among other things, Ross (1983)
shows how you can find an optimal stationary policy for stochastic dynamic
programming problems based on Markov chains via linear programming.
Winston (2004), Chapter 19, gives a very convenient summary of this app-
roach and related methods.

It has often been considered more elegant and sometimes more relevant
to deal with continuous time formulations and solutions. Pontryagin (1961)
is often regarded as the founder of optimal control theory. Fleming and
Rishel (1975) present most of the general theory and proofs in a complete
fashion. Sethi and Thompson (2000) give a very good description of the area
and derive the central proofs using dynamic programming in an efficient
way. In fact, several authors have used continuous time optimal control
theory to derive optimal solutions in forestry. Clark (1976) derives the
optimal thinning policy in forestry using deterministic optimal control in
continuous time. Sethi and Thompson (2000) develop the model from Clark
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(1976) in a similar way. Clark (1976) and Sethi and Thompson (2000) refer
to Kilkki and Vaisanen (1969). who developed the original optimization
model in discrete time using dynamic programming. The later authors then
transformed the model into continuous time.

The author of this paper is not convinced that the later continuous time
versions of the Kilkki and Vaisanen (1969) model are more relevant or better
in any way. The optimal stock-level function is smooth and elegant in the
continuous time version. The discrete time model however has the very
important advantage that the harvest cost function in a very simple way can
include the set-up cost, the cost of moving harvesters, forwarders and labour
to the site. and many other parameters that may vary in many different ways
between periods. Hence, the discrete time version may come as close as
you want to the true optimal solution. It is never optimal to “continuously
harvest” the forest. The prices and variable harvest costs per unit are assumed
constant over time in the Sethi and Thompson (2000) continuous time ver-
sion. Furthermore, there are unfortunate errors in the Hamiltonian function
analysis in the otherwise very well-written Sethi and Thompson (2000)
book. since the discounting factor was forgotten. The original dynamic pro-
gramming version is much more easily described to the reader and the dyna-
mic programming version can also easily be extended to the really relevant
case, where you may have stochastic disturbances of many different kinds.
Then, we simply go to stochastic dynamic programming in discrete time. A
final argument is that very few, if any, real things are continuous. In the time
dimension, as one example, we note that growth and harvesting conditions
normally change over the year, Some scasons are warm, others are cold,
some are wet, and some are dry.

Furthermore, as the discrete time intervals approach zero, we should not
neglect the existence of day and night. since the light conditions usually
affect biological growth in forests and clsewhere and most connected acti-
vities in the economies. As a result, it may be better to handle the real and
relevant periods via discrete time dynamic programming than to assume that
they do not exist, using continuous time optimal control. Continuous time
optimal control can be extended to stochastic continuous time optimal
control. This approach has found many applications. Sethi and Thompson
(2000) give a good summary with typical applications from different fields.
The reader should be aware that the underlying process assumptions often
are very restrictive. If the assumptions are relevant to the application at hand,
this may not be a problem. Gleit (1973) investigates a stochastic optimal
control problem in continuous time and derives an optimal harvest function.
The mathematical analysis is well performed and the analytical difficulties
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are openly demonstrated. In order to be able to derive some explicit results,
several highly restrictive assumptions have to be introduced. One of these is
the assumption that the expected growth is proportional to the stock level.
From a biological perspective. such assumptions are seldom relevant. Even
such a very special analysis with simplifying assumptions required 13 pages
of advanced formulac. The author of this paper is convinced that it is far
from easy to handle the types of stochastic disturbances described in the
introduction via continuous time optimal control theory. Discrete time sto-
chastic dynamic programming is mostly a more relevant approach, in par-
ticular since this makes it possible to include set-up costs. most types of
functional forms (or at least discrete approximations), and periods with all
kinds of different properties in a convenient way.

3 STOCHASTIC DYNAMIC PROGRAMMING

Here. a very general definition of the economic management problem is
given along the lines found in Winston (2004) and many earlier publications.
W(i,f) is the expected present value at time 7, i is the state, and r is the rate
of interest. A(i,f) denotes the control. such as the harvest. as a function of
state and time. We use stars to indicate optimal values. W(i.t) = W(i,ti'(iy0).
R(i.t.hr) is the profitat time ¢. T is the horizon. W(i,T+1)-0Vi

7(jli,t.h) denotes the conditional probability of reaching state j in period
t+ 1 and ZJ Ul i.1.h) is the expected value of the entering state in period
fiieay

il

Forre{1,2,...T} and ie{1,2,...1}, we determine the optimal harvest (and
other) decisions.

!

W (ir) = mMLRu,r.mﬂf’z fG LI+ 1) |
h

he i)

j=1

where H(i) is the feasible control set and may sometimes also contain a time
argument, which may be important if harvest capacity is changed over time.

If the planning horizon is infinite and functions do not change over time,
we can simplify the problem by dropping the time index, using the following
definition:
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W (i,t)y =W (i) =W, . In the same manner, we write:

R(i.t.h)=R(i,h)=R,,.

Since each W; should be optimal and independent of 1, the following
inequalities must hold.

i
W,2R,+e Y t(jli.mW, Yih|heH().

J=1

Furthermore, there is an upper bound on each W, W, cannot exceed the
value obtained if the best decision is selected.

S
W' =R .+e" ) t(jli,h W,

Hence. the optimal values can be determined from this lincar program-
ming formulation:

/
min Z :ZIIf
i=1

5.1

!

W~ c(jlihW, 2R, Vih|heH().

4 STOCHASTIC SCENARIO TREE OPTIMIZATION

The approach of multi-period stochastic programming used below has been
well described by Birge and Louveaux (1997). The particular forest mana-
gement problem was suggested by the author and first presented at the
MODFOR conference in 2002. Let us denote adaptive multi period stochastic
programming with scenarios, A1, and stochastic dynamic programming, A2.
Al and A2 have different advantages and disadvantages in practical app-
lications. The author has used A2 in many applications with very good
results but thinks that A1 may be an approach which is more casily used as a
“default value™ standard tool within some application areas. Here, we
describe Al: We maximize the expected present value, I, of the net profits
from all periods, 1.2, ..., n.
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d: $p3

L

d = Forest department

512, = One scenario defining the states of the exogenous stochastic pro-
cess(es) from period 1 until period ¢

d(.) = Probability (of a scenario) estimated before the exogenous stochastic
process outcomes have been observed

r= Rate of interest in the capital market
m = Time length of a period
K = Discounting factor. We assume that all results from a period occur in the

middle of that period. Time zero is the point in time where the first period
starts. The discounting factors of the different periods, #, are k.

1
—{F—;)mr
k=e °?
—(2—%)»1!’
=
2
-[n-;l;)mr
kﬂ = e =
Pus,, , =Net price (price - harvesting costs per volume unit) in forest

department d in period ¢ if the scenario which has been followed until period
tis Si12..1

vds.z._,, = Volume per area unit (density) in department o in period ¢ if the

scenario which has been followed until period 1 is sy, ,
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hds-l, = Harvest arca in department d in period ¢ if the scenario which
has been followed until period 7 is 5,2,

d = Forest department

s12_,=One scenario defining the states of the exogenous stochastic
process(es) from period | until period ¢

#(.) = Probability (of a scenario) estimated before the exogenous stochastic
process outcomes have been observed

r = Rate of interest in the capital market
m = Time length of a period
k = Discounting factor. We assume that all results from a period occur in the

middle of that period. Time zero is the point in time where the first period
starts. The discounting factors of the different periods, ¢, are k;:

(! IJHu'
k=e °?
[3—] ymr
)
k.=e 7=
(u--‘ ymr
o 2
k =e
Py, , =Net price (price - harvesting costs per volume unit) in forest

department ¢ in period ¢ if the scenario which has been followed until period
118 512

Vas,, , = Volume per area unit (density) in department  in period ¢ if the

scenario which has been followed until period 7 is 512,

L= Land value (of bare land) in department

hd‘.l‘ ~ = Harvest area in department d in period ¢ if the scenario which

has been followed until period 7 is 512
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Constraints and equations:

The probabilities of the different scenarios sy, , should be calculated via the
(possibly time dependent) state transition probabilities for each ¢ such that
2 <t <n The definitions of the exogenous stochastic process(es) may be
different. The exogenous stochastic processes usually influence the variables
in the problem. the objective function cocfficients, the sct of feasible
decisions, or something else. All of these effects must be caleulated for cach
time period and scenario. The parameter vectors of different scenarios may
be identical in the first periods. In such cases, constraints must exist that
make sure that also the decisions are the same. As long as the parameter
vectors are the same, the “true”™ scenario cannot be identified. This has been
discussed by Lohmander (1994).

If there are physical constraints, such that a particular forest department
arca only can be harvested once during the defined time horizon, these
constraints must be defined for each scenario covering the complete time
horizon. The dynamic timber volume developments in the different depart-
ments should be calculated through relevant difference equations. There may
be other constraints, connecting the possible decisions in different forest
departments. Perhaps the total harvest volume has to stay within some inter-
val which is feasible because of delivery contracts? Perhaps there 1s a local
pulp mill which needs a more or less constant flow of pulpwood? Then,
constraints have to be defined which make sure that, for each scenario, the
total harvest volumes stay within the feasible sets in the different periods. In
some cases, there are harvest arca constraints because of forest act regula-
tions. In Sweden, such rules define dynamic scts of feasible harvest activities
at forest properties, One Swedish forest property application including the
forest act regulations is found here:

http:/Awww. lohmander.com/kurser/MODFORO2/M DFORO2.htm

A forest logistics application of the stochastic scenario method is found in
Lohmander and Olsson (2005).

5 OPTIMIZATION OF ADAPTIVE CONTROL
FUNCTIONS WITH STOCHASTIC SIMULATION
OF THE OBJECTIVE FUNCTION

This approach is very flexible. You can in principle handle all kinds of
functions and constraints. You just define the complete model as a stochastic
simulation model. You determine your adaptive strategy, the principles that
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give the decisions as a function of the revealed state of the system, time, etc.
Then, when you simulate the system, you let the system decide your decisions
according to your suggested adaptive strategy and calculate your objective
function value, for instance the expected present value. You simulate the com-
plete system a large number of times, let us say 1,000 times, and divide the
sum of the objective function values by the same number, for instance 1,000,
That way, you get an estimate of the expected present value. Then you may
use different numerical methods in order to search a strategy that is close to
the optimum. One approach which has been tested in typical forestry app-
lications and turned out to come close to the optimum rather rapidly is the
following: Let us assume that the decision, such as the harvest level, 1s an
adaptive function of the state of the system including information about the
stock level and the price. We assume that this function has two parameters
defined by the point (X.Y). (X,}) should be optimized. An example ol such
an adaptive harvest function could be (V. P, X, ¥) where h denotes harvest
as a function of stock, ¥, and price, P. The parameters are X and Y.

Initially, you guess the optimal parameter combination (X,}). You inves-
tigate, via a large number of stochastic simulations, the expected objective
function value, F, in this position. Then, you take steps, dX and dY, in cach
direction, and visit points (X + dX,Y) and (X.}Y+dY). In these coordinates,
you investigate the expected objective function values. Now, you have useful
information and can determine approximations to the partial derivatives of
the expected objective function value ¢F/@X and OF/cY. With this infor-
mation, you determine (an approximation of) the direction of the steepest
path. You take steps of equal size in that direction and investigate F each
time. As long as F increases, you continue in the same direction. When you
have passed the peak, you reduce the step size and go back. You continue to
go back and forward, reducing the step size, until you are “satisfied”. Seen
from the “peak™ in the first selected direction, it is possible that the deri-
vatives OF/AX and 6F/0Y are different. Hence, you check these derivatives
again and go in the “locally best” direction until you find a new peak. The
process is repeated until you are satisfied. This approach is conceptually
simple and flexible. One problem is that we do not know if we find a global
maximum. Another problem is that stochastic deviations from the locally
optimal solutions are likely. because we cannot “afford” to spend too much
computing time with very large numbers of system simulations in cach
position. The step size is another issue that deserves some attention. Still,
despite all the numerical problems with this approach, it may serve as a good
alternative in some cases. The studies by Lohmander (1992a, 1993) are two
such examples.
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6 ADAPTIVE STAND-LEVEL OPTIMIZATION
WITH FINAL HARVESTS

Forest management has been optimized at the stand level via stochastic
dynamic programming in discrete time with continuous probability density
functions of stochastic prices by Lohmander (1983, 1987, 1988). Other authors
have later published the same type of models and results. This approach
makes it possible to derive optimal reservation prices and expected optimal
values of the forest stand and land explicitly via recursion and analytical
methods. A reservation price is the price which makes you indifferent
between the alternatives to harvest directly and to wait longer. If the price
offer is higher than the reservation price, you should harvest directly. If
the price offer is lower than the reservation price, you should wait longer.
Here, the main structure of the model will be presented. W, is the expected
present value in period ¢ before the price p in the same period has been
observed. Prices are stochastic and have the probability density function
J(p). f(p)=0¥p. In cach period, new stochastic prices are revealed in the
market. This type of price process is a special case of a stationary stochastic
process. If we consider time periods of 5 years, this is a model that is not
easy to reject on statistical grounds in the Swedish market and many other
markets. The prices really denote “real net prices”, nominal prices —
harvesting costs per volume unit deflated by consumer price indices. The
reservation price in a particular period is denoted by g,. If ¢,> p,. then you
should wait at least one period more for a new price offer. If ¢,=p, the
probability of which is almost zero, you are indifferent between the alter-
natives to harvest at once and to wait at least one more period. If g, < p,, then
you should harvest directly. J"is the volume per area unit and L is the value
of the land released after harvest. We select to start the calculations far in the
future, at the horizon, T. It turns out that the particular choice of 7 is not
critical to the results as long as T is sufficiently large, for instance three
times the age of the optimal forest rotation age in a deterministic analysis.

-

W, =0

4 w0
W, = (W f(p)dp+ [e" (pV )+ L) f(p)dp, Vi|t<T.
e 4
The reservation prices are optimized for each period  such that r < T.

dw . " ;

d_f =g )(WHl -e (g V(1) + L)) =0
q,

[a)>0= (W, -e"(gV()+L1))=0




i ———
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dw,
dg,

=0|=[e" @+ =W, ].

The present value of harvesting, given that the price is equal to the
reservation price, is the same as the expected present value in case you wait
at least one more period and take optimal decisions in future periods based
on the revealed outcomes of the stochastic prices. In optimum,

1

(L =e (g V() + L]) =0, which implies that

th:’ =—f(g,)e "V (1) <0.
dg -

i

We find that the solution is a unique maximum in each period. The
optimal reservation prices and expected present values are determined
recursively, starting from 7 via the backward algorithm of dynamic
programming.

v W=
= .
V(r)

You may state the optimization problem as:

L ) * -t = | .
W, = Jmax{ﬁf"m.e (pV(n+ L)f f(p)dp, V{‘{ ks

As a result, it is clear that the expected present value is a nonstrictly
decreasing function of time. W'z H’;'_l . In most empirically relevant cases,

g <. fip)> Ovpand W, > W,

-, - As aresult, the expected present value is
a strictly decreasing function of time. This is not really surprising: If we
move forward in the time dimension and still have not harvested, this
indicates that we have not experienced prices above the optimal reservation
prices yet. The longer we have to wait before we experience such a good
price, the worse. Before we knew that this would happen, we had many
valuable options ahead of us. That is why the expected present value is a
decreasing function of time. The reader should be aware that we should not
decide the harvest year in advance if the market prices are stochastic. We
should wait and sece what happens in the market before we decide to harvest
or to wait longer. The reservation prices can however be optimized along the
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lines suggested in this section., Often, the optimal reservation prices are
decreasing functions of time. However, this does not always have to be the
case. Furthermore, if we make a more detailed analysis, we have to consider
the changing dimensions of the trees, proportions of possible timber and
pulpwood harvest levels, and quality-dependent price lists. If we look at the
decision problems using shorter periods. such as months or years, we usually
have to consider autocorrelation issues in detail. Different kinds of stochastic
price and growth processes may lead to different results. Such detailed
analyses have been done by, for instance. Lohmander (1987). General findings
in this area have been reported by Lohmander (2000).

7 ADAPTIVE CONTINUOUS COVER OPTIMIZATION
AT THE STAND LEVEL

Now, we move on to discrete time optimization of continuous cover forest
management using dynamic programming. The analysis will start with a
deterministic model that becomes transformed to a stochastic version. The
analysis below was originally presented by the author at EURO/Informs,
Istanbul, 2003. The volume stock levels, S, are defined in such a way that the
stock moves up one level per 5-year period. Volume is denoted by V. The
volume growth is assumed to follow this process G(V) — al + A2 which is
consistent with the classical logistic growth assumption in natural resource
economics. We may rewrite the function in this way: G(V)=slI(1-V/K),
where s is the “intrinsic growth rate™ and K is the “carrying capacity” of the
environment, In the analysis, we assume that s =5% and K=400 cubic
metres per hectare, which are typical parameters in some Swedish forests,
The particular numerical values are however not important to the qualitative
discussions. Of course. other numerical values will be the results if other
growth parameters are used. The qualitative results are however the same. In
the cases without price risk, it is assumed that the real price per cubic metre
is 300 SEK. which is close to the average value in Sweden. The real variable
harvesting cost is 100 SEK per cubic metre. (7 SEK=SUS 1). When there are
set-up costs, representing the costs of moving harvesters, forwarders, and
labour to the objects, these are assumed to be 500 SEK per hectare and
occasion in real terms. which is typical in Sweden. When stochastic prices
are assumed, then the prices per cubic metre are 220, 260, 300, 340, and 380
when the “business states™ are 1, 2, 3, 4, or 5 respectively. Then, all business
states are assumed to have equal probability. This degree of price variation is
typical in Sweden and it is hard to statistically reject the hypothesis that a
more or less uniform net price probability distribution is relevant, using
historical data. All of the analysis in this section concerns optimization with
infinite horizon. In the examples, a 3% real rate of interest is used. The stock
level is constrained to simplify the illustration: 0 < § < 13 (Table 1).



vhich is

ESOUETCE
ik,
" of the
0 cubic
forests.
slitative
{ other
ame. In
¢ metre
cariable
here are
s, and
are and
> prices
and 380
WUSINESS
ation IS
s that a
, using
on with
e stock

Adaptive Optimization of Forest Management in a Stochastic World 539
Table 1. The “classical” and most simple case with a constant price of 300 SEK per cubic
metre and without set-up costs: the table shows the optimal harvest volumes per S-year period
as a function of the entering stock level,
Entering stock Optimal harvest
(cubic metres per hectare) volume (cubic metres

per heetare)

67
81
97
116 49
136 69
159 92
183 116
207 140

In the relevant case, demonstrated in Table 2, the set-up costs and

stochastic prices are treated consistently and simultancously. The optimal
harvest is an increasing function of the stock level and the price level. We

also note that “low volume harvesting” should be avoided when possible,
which is natural since we have set-up costs.

Table 2. The relevant case with set-up costs and price risk: The table shows the optimal
harvest volumes (cubic metres per hectare) per S-year period as a function of the entering
stock level and the price level.

F,ntcﬁng stock Price (SEK per cubic metre)

(cubic metres per s
hectare) 260 300 340
30 0 | 0

=
37

51
67
86
106
129
153
178
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8 ADAPTIVE COMPANY-LEVEL FOREST
MANAGEMENT OPTIMIZATION

Lohmander

In forest companies, you often face global constraints, such as harvest
capacity constraints, delivery contracts, etc. Optimal harvesting decisions in
forestry under the influence of stochastic prices have mostly been studied
under the assumption of complete stand separability. In situations when the
harvester capacity is a binding constraint, the optimal stands to harvest
cannot be determined without explicit consideration of this constraint, which
means that stand separability assumptions are not relevant. Then, it may
be optimal to harvest a particular stand if the timber price is low but not if
the price is high. The profitability of harvesting may be more sensitive to the
timber price in some other stand. Hence, it may be more important to use the
machines in another stand if the timber price is very high. The expected
shadow price of harvester capacity is an increasing function of the degree of
timber price variation, indicating that the optimal harvester capacity is higher
under risk than under certainty in some cases. Many other types of “global
constraints” usually exist in forest sector enterprises. Many of them are
expected to give “disturbances” to the classical “optimal economic stand mana-
gement” decision rules. You may think that dynamic programming cannot be
applied to relevant problems because of the curse of dimensionality. Maybe
this is not always quite true. Optimal adaptive decisions can be determined at
the forest company level. Some examples are found in the reference list:
Lohmander (1992b, 1993, 1997a). Optimal infrastructure investments are also
important. Compare Olsson and Lohmander (2005).

The expected present value increases if the risk of the stochastic prices
increases and there are options to wait for the best harvesting occasions. The
positive effects of increased price risk are reduced in case the harvesting
capacity is low. If the harvesting capacity increases, you have a more
flexible system and can take advantage of sudden price increases in a better
way. The expected shadow price of harvest capacity is an increasing func-
tion of the degree of timber price variation. The optimal harvest capacity
is higher under risk than under certainty in some cases. The traditional
deterministic analysis does not give the correct shadow prices. This, in turn,
leads to too low-capacity investments. The approach in this paper gives the
correct expected shadow prices and can be used to optimize harvest capacity
investments.
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9 DISCUSSION

No paper is complete in the sense that all relevant issues are mentioned. The
area of adaptive optimization of forest management contains many different
kinds of special topics and if all of these should be discussed, you would not
have been able to go into details in any particular direction. Hence, a
selection of some of the most important problems had to be made. This paper
contains a treatment of the final harvesting problem with adaptive optimi-
zation. We have also analysed the continuous cover forestry problems with
and without price risk and set-up costs. Some other problems were men-
tioned and different types of global constraints were discussed in connection
to the stochastic programming formulation and typical methodological tools
were described. Now, the reader is advised to search for relevant applications
in other directions. Optimal forest sector logistics is one area where new and
relevant results can be obtained, in particular since roads and other parts of
the logistics network may be disturbed by unexpected rains, snow and ice,
and other problems that cannot be perfectly predicted. If you cannot deliver a
sufficient flow of wood to the pulp mills, you may have to stop production,
which may be very costly. Hence, there is an optimal combination of road
capacity, trucks, pulpwood storage, and locations, which is not always easy
to optimize. Some efforts in this direction have however been made in recent
years and can be found in the reference list. Stochastic damages of many
kinds have been analysed and the optimal adaptive strategies have been deter-
mined. Some of the recently investigated areas in this class concern species-
selective damages caused by moose in Sweden and the optimal mix of species
and selective thinnings in plantations. In large parts of Northern Sweden,
moose damages to Scots pine cause severe problems and mixed species plan-
tations are sometimes the economically best solution. Compare Lu and
Lohmander (2005).

Another topic with reported optimal results is the spatial and temporal
management of forest areas where stochastic winds randomly cause wind-
throws. In Sweden, the windthrow topic has been quite dominating during
the spring of 2005 because a hurricane. named Gudrun, destroyed very large
forest areas in southern Sweden completely. Research results existed much
carlier, indicating that the optimal harvest ages are lower in stormy arcas,
that one should keep large areas together without partial harvests since the
stands protect each other from the wind and that one should modify the
spacing and thinning intensity. Compare Lohmander and Helles (1987) and
Lohmander (1987b). However, the Swedish forest act did not take such
things into account and the forest owners could not deviate from the detailed
forestry regulations. With some luck, the forest act may be modified in the
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near future and consider these problems more carefully. So far, we have not
mentioned the fact that the markets sometimes may be described as dynamic
games. When the number of players is small, which is sometimes the case, at
least locally, we may use deterministic or stochastic differential or difference
games to study the optimal decisions. Compare Lohmander (1997b). This is
a very large field that deserves much more efforts in the future. The area of
stochastic difference games may be regarded as a very natural extension of
adaptive optimization. Of course, this is highly relevant in the forest sector.
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