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Abstract 

 
        Theoretical understanding of the relevant problem structure and consistent mathematical 

modeling are necessary keys to formulating operations research models to be used for 

optimization of decisions in real applications. The numbers of alternative models, methods and 

applications of operations research are very large. This paper presents fundamental and general 

decision and information structures, theories and examples that can be expanded and modified in 

several directions. The discussed methods and examples are motivated from the points of view of 

empirical relevance and computability.   
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       1 Introduction 
 

Operations research is a very large area. In this paper, we will focus on operations research in 

connection to optimization of decisions, with one or more decision maker(s). The classical 

analytical methods of optimization and comparative statics analysis, basic economic theory and 

fundamental linear programming are well presented in Chiang [3].    

 

Mathematical modeling is central to operations research. Usually, in applied problems, there are 

many different ways to define the mathematical models representing the components of the 

system under analysis. The reference book of the software package LINGO [1] contains large 

numbers of alternative operations research models and applications with numerical solutions. 

 

A particular applied problem should, if possible, be analyzed with a problem relevant operations 

research method, using a problem relevant set of mathematical models. This may seem obvious to 

the reader, but it is far from trivial to determine the problem relevant method and models. 

The two books by Winston, references [16] and [17], give a good and rather complete 

presentation of most operations research methods, algorithms and typical applications. The 

operations research literature contains large numbers of alternative methods and models, applied 

to very similar types of applied problems. In many cases, the optimal decisions that are the results 

of the analyses, differ considerably. 
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For instance, if we want to determine the optimal decision in a particular problem, we may define 

it as a one dimensional optimization problem, or as a multidimensional problem where we 

simultaneously optimize several decisions that may be linked in different ways. We may also 

consider constraints of different sorts. In most problems, present decisions have consequences for 

the future development of the system under analysis. Hence, multi period analysis is often 

relevant. Weintraub et al [15] contains many dynamic operations research problems and solutions 

from different natural resource sectors. Then, we realize that the future state of the world can 

change for several reasons. In resource management problems, for instance, we often want to 

determine optimal present extraction of some resource, such as coal or oil. If we take more today, 

we have to take less in the future. The present and future prices are very important parameters in 

such decision problems and we usually have to agree that the future prices are not perfectly 

known today. Price changes may occur because of technical innovations, political changes and 

many other reasons. We simply have to accept that future prices can never be perfectly predicted. 

Hence, the stochastic properties of prices have to be analyzed and used in the operations research 

studies in order to determine optimal present decisions. Many types of resources are continuously 

used, thanks to biological growth. Braun [2] gives a very good presentation of ordinary 

differential equations, which is key to the understanding and modeling of dynamical systems, 

including biological resources of all kinds. In agriculture, fishing, forestry, wildlife management 

and hunting, resources are used for many different purposes, including food, building materials, 

paper, energy and much more. In order to determine optimal present decisions in such industries, 

it is necessary to develop and use dynamic models that describe how the biological resources 

grow and how the growth is affected by present harvesting and other management decisions. 

Clark [4] contains several examples and solutions of deterministic optimal control theory 

problems in natural resource sectors.  

 

The degree of unexplained variation in the future state of the resource is often considerable. Many 

crops are sensitive to extreme rains, heat, floods, parasites and pests. Forests are sensitive to 

storms and hurricanes, fires etc.. Obviously, risk is of central importance to modeling and applied 

problem solving in these sectors. Grimmet and Stirzaker [6] contains most of the important theory 

of probability and random processes. Fleming and Rishel [5] contains the general theory of 

deterministic and stochastic optimal control. Sethi and Thompson [12] cover a field very similar 

to [5], but is more focused on applied derivations. Lohmander [8] and [9] shows how dynamic 

and stochastic management decisions can be optimized with different methods, including 

different versions of stochastic dynamic programming. Lohmander [10] develops methodology 

for optimization of large scale energy production under risk, using stochastic dynamic 

programming with a quadratic programming subroutine. Deterministic systems are not 

necessarily predictable. Tung [13] is a fantastic book that contains many kinds of mathematical 

modeling topics and applications, including modern chaos theory and examples. Such theories 

and methods are also relevant to rational decision making in resource management problems. 

Until now, we have only considered problems with one decision maker. In reality, we often find 

many decision makers that all influence the development of the same system. In such cases, we 

can model this situation using game theory. Luce and Raiffa [11] gives a very good coverage of 

the classical field.  In games without cooperation, the Nash equilibrium theory is very useful. 

Each player maximizes his/her own objective given that the other player maximizes his/her 

objective. Washburn [14] focuses on such games and the important and often quite relevant 
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subset “two person zero sum games”. In such games, linear programming finds many relevant 

applications.  Isaacs [7] describes and analyses several games of this nature, but in continuous 

time, with the method differential games. This manuscript could have been expanded in the 

direction of dynamic and stochastic games. The present format limitation however makes this 

impossible. Let us conclude this section with the finding that mathematical modeling in 

operations research is a rich field with an almost unlimited number of applications.  

 

                2 Analysis 

 
Let us investigate alternative specifications of operations research models and discuss the 

properties. We may consider (1) as a general representation of linear constraints, as we find them 

in most logistics problems, manufacturing problems and many other applied problems. We 

assume that a feasible set exists and know that the feasible set obtained with linear constraints is 

convex. In a production problem, kx  is the production volume of product k and the constraints 

are capacity constraints, where lC is the total capacity of resource l . 
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In case we have a linear objective function, such as the total profit, , we may express that as (2).  

 

1 0 1 1(2) ( ,..., ) ...K K Kx x p p x p x      

Linear programming is a relevant optimization method if we want to maximize (2) subject to (1). 

The simplex algorithm will give the optimal solution in a finite number of iterations. In many 

applied problems, such as production optimization problems, it is also important to be able to 

handle the fact that market prices often are decreasing functions of the produced and sold 

quantities of different products. Furthermore, the production volume of one product may affect 

the prices of other products, the marginal production costs of different products may be linked 

and so on. Then, the objective function of the company may be approximated as a quadratic 

function (3). (Note that (3) may be further simplified.) 
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With a quadratic objective function and linear constraints, we have a quadratic programming 

problem (4). Efficient quadratic programming computer codes are available, that have several 
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similarities to the simplex algorithm for linear programming. The Kuhn-Tucker conditions can be 

considered as linear constraints and in [16] and [1], many such examples are solved.    
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In real applications, we are often interested to handle the sequential nature of information. Market 

prices usually have to be regarded as partially stochastic. We may influence the price level via 

our production and sales volumes. Still, there is usually a considerable price variation outside the 

control of the producer. Then, we can optimize our decisions via stochastic dynamic 

programming, as shown in the example in (5) and (6). Let us consider the optimal extraction over 

time from a limited oil reserve. In every period t until we reach the planning horizonT , we 

maximize the expected present value, (.)f , for every possible level of the remaining reserve, s , 

and for every market state, m . (.)f = 0 for 1t T  , which is shown in (6). In all earlier periods, 

the values of (.)f  are maximized for all possible reserve and market levels, via the control u , 

the extraction level. In a period t , before we reach 1t T  , the control u  is selected so that the 

sum of the present value of instant extraction (.)  and the expected present value of future 

extraction ( ) ( 1, , )
n

n m f t s u n    is maximized. ( )n m denotes the transition probability 

from market state m  to market state n from one period to the next. The control u has to belong 

to the set of feasible controls (.)U  which is a function of t , s  and m . Equations (5) and (6) 

summarize the principles and the recursive structure.  

 
( , , )

(5) ( , , ) max ( ; , , ) ( ) ( 1, , ) ( , , ) 0
u U t s m

n

f t s m u t s m n m f t s u n t s m t T 


 
       

 


 

(6) ( 1, , ) 0 ( , )f T s m s m    

 

With the stochastic dynamic programming method as a general tool, we may again consider the 

detailed production and/or logistics problem (4). Now, we can solve many such problems, (4), as 

sub problems, within the general stochastic dynamic programming formulation (5), (6). Hence, 

for each state and stage, we solve the relevant sub problems. 

Now, the capacity levels (7) may be defined as functions of the control decisions, time, the 

remaining reserve and the market state. Furthermore, all other “parameters”, may be considered 

as functions, as described in (8), (9) and (10). As a result, we may describe the sub problems as 

(11) or even as (12). 

 

(7) ( , , , )l lC C u t s m l   

(8) ( , , , ) ( , )lk lk u t s m l k    
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(9) ( , , , )k kp p u t s m k   

1 2 1 2 1 2(10) ( , , , ) ( , )k k k kr r u t s m k k   
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Now, we include the sub problems in the stochastic dynamic programming recursion equation 

(13). A problem of this kind is defined and numerically solved using LINGO software [1] by 

Lohmander [10].  
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Observe that (13) represents a very general and flexible way to formulate and solve applied 

stochastic multi period production and logistics problems of many kinds. The true sequential 

nature of decisions and information is explicitly handled, stochastic market prices and very large 

numbers of decision variables and constraints may be consistently considered. Furthermore, many 

other stochastic phenomena may be consistently handled with this approach. Several examples of 

how different kinds of stochastic disturbances may be included in optimal dynamic decisions are 

found in Lohmander [8] and [9].   

 

In the game theory literature, [7], [11] and [14], we find many examples of two player constant 

sum games. In (14), we find such an example, with one objective function. The value of the 

game, Z , is what we obtain when one player maximizes and one player minimizes the same 

objective function ( , )Q   . The maximizing player, A , determines control  and the minimizing 

player, B , determines control . ( , )Q    can, for instance, represent the difference in profit or 

resources between two companies or countries, during a conflict over a particular economic 

market, a geographical territory or something else. During a period of conflict, it may be relevant 

to define this as a constant sum game. (In other cases, con-constant sum games are sometimes 

more relevant, but then it is not always the case that strictly mathematical definitions of the game 

can be defined and explicitly solved.) Of course,  and  may represent vectors.  
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_ _

(14) min max ( , ) ( , )Q Q
 

       

 

We may develop and analyze constant sum games in a similar way as the earlier discussed 

problems, via the stochastic dynamic programming framework. In (15) and (16), one player 

maximizes and one player minimizes the value of the game. The maximizing player A controls 

u and x and the minimizing player B controls v and y . The resources of A and B at time t are 

Ats  and Bts . Stochastic exogenous disturbances influence the development of the system via the 

transition probabilies ( )n m . The state in the next period is considered as a general function of 

decisions of both players and of other variables and parameters. In simple situations, continuous 

time versions of dynamic game problems can be defined as differential games, as reported by 

Isaacs [7]. With a higher level of detail, we usually have to use discrete time and state space. 

Several interesting discrete examples are found in Washburn [14].  
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(16) ( 1, , , ) 0 ( , , )At Bt At BtZ T s s m s s m    

 

 

 

Note that the specification of the structure described by (15) and (16) can be adjusted to specific 

applications. This structure can be regarded as a generalization of many problems in [7] and [14].  

The control decisions u and v , may represent key decisions, such as total use of constrained 

resources. As seen in (15), these decisions also influence the options and game values in future 

periods. The other control decisions, x and y , where x and y may be vectors, can represent the 

decisions of A and B in very high resolution. Linear or quadratic programming as a tool in the 

sub problems makes this possible. Furthermore, the stochastic dynamic main program can 

provide solutions with almost unlimited resolution in the time dimension. The recursive structure 

of problem solving does not make it necessary to store all results in the internal memory. Of 

course, computation time increases with resolution. 
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                3 Main Results 

 
Operations research contains a large number of alternative approaches. With logically consistent 

mathematical modeling, relevant method selection and good empirical data, the best possible 

decisions can be obtained. This paper has presented arguments for using some particular 

combinations of methods that often are empirically motivated and computationally feasible.   

 

 
 
Figure 1: The optimal oil industry management problem includes finding the optimal combination of oil extraction in different fields, 

domestic crude oil transport, refining and international logistics. All of this should be done with consideration of stochastic world 

market prices and possibly other stochastic events. Source: Lohmander [10]. Equations (13) and (6) are useful to solve this problem.  
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