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Statistics and Mathematics of General Control Function Optimization for 
Continuous Cover Forestry, with a Swedish Case Study based on Picea abies

Abstract:
Continuous cover forests contain large numbers of spatially distributed trees of different sizes. The growth 
of a particular tree is a function of the properties of that tree and the neighbor trees, since they compete 
for light, water and nutrients. Such a dynamical system is highly nonlinear and multidimensional. 
Lohmander [1], [3] and [4] shows how dynamic management of such systems can be optimized, via optimal 
control functions, dynamically applied to each tree. Lohmander [5] applies a related method to optimize 
the management of a dynamic multi species system with animals. In this paper, a particular tree is instantly 
harvested if a control function based on two local state variables, S and Q, is satisfied, where S represents 
the size of the particular tree and Q represents the level of local competition. The control function has two 
parameters. An explicit nonlinear present value function, representing the total value of all forestry 
activities over time, is suggested. This is based on the parameters in the control function, now treated as 
variables, and six new parameters. The functional form is motivated by a set of explicit hypotheses. Then, 
explicit functions for the optimal values of the two parameters in the control function are determined via 
optimization of the present value function. Two equilibria are obtained, where one is a unique local 
maximum and the other is a saddle point. An equation is determined that defines the region where the 
solution is a unique local maximum. Then, a case study with a continuous cover Picea abies forest, in 
southern Sweden, is presented. A new growth function, which is an extended version of Lohmander [2], is 
estimated and used in the simulations. The following procedure is repeated for five alternative levels of the 
interest rate: The total present value of all forest management activities in the forest, during 300 years, is 
determined for 1000 complete system simulations. In each system simulation, different random 
combinations of control function parameters are used and the total present value of all harvest activities is 
determined. Then, the parameters of the present value function are estimated via multivariate regression 
analysis. All parameters are determined with high precision and high absolute t-values. The present value 
function fits the data very well and no hypothesis can be rejected. Then, the optimal control function 
parameters and the optimal present values are analytically determined for alternative interest rates. The 
optimal solutions found within the relevant regions are shown to be unique maxima and the solutions that 
are saddle points are located far outside the relevant regions.
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Continuous cover forests contain large numbers of spatially 

distributed trees of different sizes. The growth of a particular tree 

is a function of the properties of that tree and the neighbor trees, 

since they compete for light, water and nutrients. Such a dynamical 

system is highly nonlinear and multidimensional. 



Lohmander [1], [3] and [4] shows how dynamic management of such systems can 
be optimized, via optimal control functions, dynamically applied to each tree.

Lohmander [5] applies a related method to optimize the management of a 
dynamic multi species system with animals. 
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In this paper, a particular tree is instantly harvested if a control function based on 
two local state variables, S and Q, is satisfied, where S represents the size of the 
particular tree and Q represents the level of local competition. The control 
function has two parameters (x, and y). 
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S = Size of the tree

Q = Local competition

0

0

Harvest
directly

Do not
harvest
yet

y = dS/dQ in the 
control boundary

x
Control boundary



Special case and optimal resorce distribution interpretation:

• We may define S, the size of the tree, as the diameter at 
breast height, ”D”, 1.3 meters above ground.

• Then, we may interpret x as the ”diameter limit”, ”DL”, in 
the case of no local competition. 

• If ”D” is >= ”DL”, and no local competition exists, then the 
tree should be instantly harvested. 

• If ”D” < ”DL”, then the tree should not yet be harvested. 
It should continue to grow until it reaches ”DL”.

• ”DL” is a decreasing function of local competition. (y < 0.)

• This is reasonable since growth resources such as 
nutrients, light and water are locally constrained. The 
particular tree negatively affects the competitors and the 
competitors negatively affect the particular tree. In order 
to avoid these negative competition effects, the trees
with local competition should be harvested when the 
diameters are smaller than the ”DL” determined without
competition. 
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An explicit nonlinear present value function, representing the total value of all 
forestry activities over time, is suggested. 
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This is based on the parameters in the control function, now treated as variables, and 
six new parameters. 

( , )f x y

1.5 2( , )f x y k ax bx cy gy hxy= + − + − −

( ), , , , 0a b c g h 
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The functional form is motivated by a set of explicit hypotheses. 

If there are no exogenous disturbances, such as competition, f(.) is a strictly concave function of x. 
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Hence, if there are no exogenous disturbances, such as competition,
f(.) is a strictly concave function of x, for strictly positive values of x. 
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The functional form is motivated by a set of explicit hypotheses. 

The optimal value of x is unique and maximizes f. This optimal value is greater than 0 and less than infinity. 
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The functional form is motivated by a set of explicit hypotheses. 

The optimal value of y is unique and maximizes f.  
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The first order optimum condition.
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( , )
0

2

df x y c hx
y

dy g

   −
=  =   

   
The optimal value of y 
is unique and conditional on x.



13

The functional form is motivated by a set of explicit hypotheses. 

The optimal value of x is a strictly decreasing function of y.   

1.5 2( , )f x y k ax bx cy gy hxy= + − + − −
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We see that the functional form is consistent with
this hypothesis, if h > 0. 



Observations of empirical data and regression analyses showed that the 
following function, which also satisfies the hypotheses, does not fit the empirical 
data as well as the suggested function, found above. 
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1.5 2( , )f x y k ax bx cy gy hxy= + − + − −

2 2( , )f x y k ax bx cy gy hxy= + − + − −

The following functional form was consistent with the hypotheses and suggested. 
Of course, marginally different functional forms can also be found that are also 
consistent with the hypotheses.
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If x is a free variable and y=0, then:

1.5 2( , )f x y k ax bx cy gy hxy= + − + − −
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First order 
optimum 
condition:

Then, explicit functions for the optimal values of the two parameters in the 
control function are determined via optimization of the present value function. 
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If x and y are free variables, then:
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Thank you Nils Fagerberg for
discovering a misprint in the 
earlier version of this page!
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Hence, there are two different
solutions to the first order 
optimum conditions.
We have to investigate if one of these
is a maximum and what the other solution is.
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Maximum

Saddle point
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Short 
movie
#0.
Click
below.



Two equilibria are obtained, where one is a unique local maximum and the other 
is a saddle point. 
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Second order conditions of local maximum:
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is satisfied
everywhere, 
for x>0 and all 
y.

This inequality is not 
satisfied for all values of x. 
The limiting value of x will
be determined from the 
inequality.
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A case study with a continuous cover Picea abies forest, in southern Sweden, has 
been made. A new growth function, which is an extended version of Lohmander 
[2], is estimated and used in the simulations. On the following three pages, Nils 
Fagerberg, Linnaeus university, presents some background to the case study field 
work, data collection and function estimations.
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Short 
Movie
#1.
Click
below.
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Short 
Movie
#2.
Click
below.
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Short 
Movie
#3.
Click
below.



The following procedure is repeated for 
five alternative levels of the interest rate:

The total present value of all forest 
management activities in the forest, during 
300 years, is determined for 1000 
complete system simulations. 

In each system simulation, different 
random combinations of control function 
parameters are used and the total present 
value of all harvest activities is 
determined. 

Then, the parameters of the present value 
function are estimated via multivariate 
regression analysis. 
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First definition of competition: 

The competition is defined as the total basal area 
of competing trees, square meters per hectare, 
within a circle with radius 10 meters. The subject 
tree is in the center of the circle.

With that definition of competition:

All parameters of relevance to the determination 
of the optimal control function are determined 
with high precision and high absolute t-values. 

The present value function fits the data very well 
and no hypothesis can be rejected. 

This is found in the following pictures, 
representing rates of interest 1% to 3%.
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r (%) 1 1,5 2 2,5 3

                 t-values in the regression analyses

k -8,97041 -6,11472 -1,14039 6,363739 16,74447

x 27,66237 34,24437 41,18366 45,60594 46,64495

x^1.5 -30,5576 -38,3753 -46,6355 -51,7893 -52,7345

y 32,01628 35,58006 38,24762 37,00359 32,11392

y^2 -25,4535 -27,9865 -28,9649 -26,5497 -21,8865

xy -53,3308 -62,2809 -69,5523 -69,3717 -62,1029

                 p-values in the regression analyses

k 1,44E-18 1,39E-09 0,2544 3E-10 1,25E-55

x 2,3E-125 2,2E-170 4,1E-217 6,4E-246 1,5E-252

x^1.5 3,9E-145 2,2E-198 1,7E-252 1,5E-284 2,8E-290

y 3,9E-155 1,8E-179 1,6E-197 3,9E-189 8,4E-156

y^2 1,9E-110 1,4E-127 3,1E-134 8E-118 5,6E-87

xy 7,2E-294 0 0 0 0
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In the following detailed regression tables, 
The notation is this:

DL0 = x

DLC = y



Regression 
r = 1.0 %

36

Regressionsstatistik

Multipel-R 0,90606

R-kvadrat 0,820946

Justerad R-
kvadrat 0,820045

Standardfel 11572,18

Observationer 1000

ANOVA

fg KvS MKv F

Regression 5 6,1E+11 1,22E+11 911,4768

Residual 994 1,33E+11 1,34E+08

Totalt 999 7,43E+11

Koefficienter Standardfel t-kvot p-värde

Konstant -235947 26302,77 -8,97041 1,44E-18

DL0 5501,829 198,8921 27,66237 2,3E-125

(DL0)^1.5 -202,919 6,64056 -30,5576 3,9E-145

DLC 31104,54 971,5226 32,01628 3,9E-155

(DLC)^2 -1255,7 49,33315 -25,4535 1,9E-110

DL0*DLC -114,217 2,141676 -53,3308 7,2E-294

x
x^1.5
y
y^2
xy



Regression 
r = 1.5 %
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Regressionsstatistik

Multipel-R 0,933819
R-kvadrat 0,872018

Justerad R-kvadrat 0,871374

Standardfel 6448,06

Observationer 1000

ANOVA
fg KvS MKv F

Regression 5 2,82E+11 5,63E+10 1354,545
Residual 994 4,13E+10 41577479
Totalt 999 3,23E+11

Koefficienter Standardfel t-kvot p-värde
Konstant -78658,9 12863,85 -6,11472 1,39E-09
DL0 3555,597 103,8301 34,24437 2,2E-170
(DL0)^1.5 -137,408 3,580645 -38,3753 2,2E-198
DLC 18364,61 516,1491 35,58006 1,8E-179
(DLC)^2 -769,31 27,48863 -27,9865 1,4E-127
DL0*DLC -74,3229 1,193349 -62,2809 0



Regression 
r = 2.0 %
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Regressionsstatistik

Multipel-R 0,951244
R-kvadrat 0,904865

Justerad R-kvadrat 0,904386

Standardfel 4230,064

Observationer 1000

ANOVA
fg KvS MKv F

Regression 5 1,69E+11 3,38E+10 1890,853
Residual 994 1,78E+10 17893438
Totalt 999 1,87E+11

Koefficienter Standardfel t-kvot p-värde
Konstant -8370,16 7339,752 -1,14039 0,2544
DL0 2616,173 63,52455 41,18366 4,1E-217
(DL0)^1.5 -105,759 2,26778 -46,6355 1,7E-252
DLC 12331,92 322,4232 38,24762 1,6E-197
(DLC)^2 -522,328 18,03314 -28,9649 3,1E-134
DL0*DLC -54,4498 0,782862 -69,5523 0



Regression 
r = 2.5 %
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Regressionsstatistik

Multipel-R 0,955078
R-kvadrat 0,912175

Justerad R-kvadrat 0,911733

Standardfel 3236,303

Observationer 1000

ANOVA
fg KvS MKv F

Regression 5 1,08E+11 2,16E+10 2064,789
Residual 994 1,04E+10 10473660
Totalt 999 1,19E+11

Koefficienter Standardfel t-kvot p-värde
Konstant 30756,29 4833,054 6,363739 3E-10
DL0 2056,22 45,08667 45,60594 6,4E-246
(DL0)^1.5 -86,5134 1,670489 -51,7893 1,5E-284
DLC 8681,028 234,5996 37,00359 3,9E-189
(DLC)^2 -366,297 13,79667 -26,5497 8E-118
DL0*DLC -41,5499 0,598945 -69,3717 0



Regression 
r = 3.0 %
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Regressionsstatistik

Multipel-R 0,94809
R-kvadrat 0,898875

Justerad R-kvadrat 0,898366

Standardfel 2741,975

Observationer 1000

ANOVA
fg KvS MKv F

Regression 5 6,64E+10 1,33E+10 1767,077
Residual 994 7,47E+09 7518429
Totalt 999 7,39E+10

Koefficienter Standardfel t-kvot p-värde
Konstant 58298,9 3481,681 16,74447 1,25E-55
DL0 1642,834 35,21998 46,64495 1,5E-252
(DL0)^1.5 -71,6322 1,358356 -52,7345 2,8E-290
DLC 6064,113 188,8313 32,11392 8,4E-156
(DLC)^2 -255,838 11,68932 -21,8865 5,6E-87
DL0*DLC -31,5147 0,507459 -62,1029 0



What happens if we redefine competition?

The first definition of competition, which we 
have now investigated, was: 
The competition is defined as the total basal 
area of competing trees, square meters per 
hectare, within a circle with radius 10 meters. 
The subject tree is in the center of the circle.

It could be convenient if we did not have to 
investigate the basal area of the competitors. Let 
us now see how the results change if we 
temporarily redefine competition and only base 
that on information about the “closest and 
biggest neighbor tree”.

41



Regression r = 2.0 % (if we only consider the competition
from the neighbor tree with the largest value of the ratio
”diameter divided by distance”. ”Competition”, Q, is then
defined as the maximum value of diameter divided by 
distance.) 
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Observation: 
This alternative definition of competition does not give satisfactory t-
values and p-values of the estimated parameters. This is 
understandable, since if we only consider the competition from the 
”biggest and closest” competitor, we do not consider all of the other
trees in the local area, that also are competitors. 

Here, DLQ = y.

Koefficienter Standardfel t-kvot p-värde

Konstant -236108,5059 2260,890939 -104,4316211 0

DL0 4950,345662 19,56770105 252,9855525 0

(DL0)^1.5 -195,6973229 0,698552758 -280,1468044 0

DLQ -156,2041181 99,31721369 -1,572779907 0,116088016

(DLQ)^2 -5,168695365 5,554815217 -0,930489164 0,352343795

DL0*DLQ 0,321986381 0,241147784 1,335224299 0,18210864



Now, the optimal control function parameters and the optimal present values are 
analytically determined for alternative interest rates. 
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The optimal solutions found 
within the relevant regions are 
shown to be unique maxima 
and the solutions that are 
saddle points are located far 
outside the relevant regions.
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r (%) 1 1,5 2 2,5 3

k -235946,7178 -78658,85812 -8370,156496 30756,29305 58298,89751

x 5501,829188 3555,596824 2616,173465 2056,220151 1642,834135

x^1.5 -202,9194332 -137,408258 -105,7591839 -86,51339767 -71,63220229

y 31104,53869 18364,61462 12331,92025 8681,028154 6064,113391

y^2 -1255,699477 -769,3098941 -522,3284433 -366,2971758 -255,8380047

xy -114,2172637 -74,32288849 -54,44982093 -41,549852 -31,51469255

The regression analysis gave these parameter values:
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r (%) 1 1,5 2 2,5 3

a 5501,829188 3555,596824 2616,173465 2056,220151 1642,834135

b 202,9194332 137,408258 105,7591839 86,51339767 71,63220229

c 31104,53869 18364,61462 12331,92025 8681,028154 6064,113391

g 1255,699477 769,3098941 522,3284433 366,2971758 255,8380047

h 114,2172637 74,32288849 54,44982093 41,549852 31,51469255

From the regression analysis parameters, the parameter values of the objective function
f(x,y) could be determined. (Note the signs of the parameters.)

1.5 2( , )f x y k ax bx cy gy hxy= + − + − −
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r (%) 1 1,5 2 2,5 3

p -58,59588331 -57,41035693 -55,89720722 -55,06799078 -55,35648026

q 786,8266608 743,280392 695,3401909 663,6273957 653,9528201

Discriminant 71,54272451 80,70687872 85,78425297 94,49350648 112,1321566

z1 20,83964842 19,72147774 18,68662472 17,81321834 17,08899291

z2 37,75623489 37,68887919 37,2105825 37,25477244 38,26748735

These values will be used to derive the results on the next page.
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r (%) 1 1,5 2 2,5 3

x_lim for maximum 858,3693853 823,9872707 781,1244439 758,1209022 766,0849767

x1 434,2909462 388,9366842 349,1899435 317,3107476 292,0336788

y1 -7,36600802 -6,851779285 -6,395793422 -6,146903042 -6,13520695

x2 1425,533273 1420,451615 1384,62745 1387,91807 1464,400588

y2 -52,44725093 -56,67901388 -60,36507994 -66,86751287 -78,34258428

f(x1,y1) 385063,3506 286382,7313 236439,9027 208055,4769 190206,8231

f(x2,y2) 139478,344 87127,99343 68381,80349 49121,6605 20095,36724

(x1, y1) is the optimal solution which maximizes f(x,y).
(x2,y2) is a saddle point, which does not maximize f(x,y).
f(.) is a strictly concave function for x < ”x_lim for maximum”. 
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r (%) 1 1,5 2 2,5 3

x(y=0) 326,7265347 297,5889722 271,965849 251,0671928 233,7697494

x1-x(y=0) 107,5644115 91,34771205 77,22409448 66,24355478 58,26392943

f1(x,y=0) 363251,1438 274043,2767 228799,7893 202839,4334 186313,8722

f(x1,y1)-f1(.) 21812,20684 12339,45466 7640,11335 5216,043419 3892,950946

x(y=0) is the optimal value of x, which maximizes f(x,y), in case y = 0.

x1-x(y=0) says how much higher the optimal x-value should be, in case we also introduce competition as a 
component in the control function.

f1(x,y=0) gives the optimal objective function value in case we do not consider competition in the decisions.

f(x1,y1)-f1(.) shows how much we expect to gain if we first only consider the size of the subject tree in the 
control function, and then start to also consider the competition.  
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The solution to the first
order optimum conditions
in the empirically relevant region is 
a maximum.

The other solution is 
a saddle point.
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Conclusions
• A control function based on the size of the tree

and the local competition can be used to optimize
continuous cover forestry.

• The mathematical principles and statistical
methods of determination of the optimal 
parameters of such control functions have been
presented.

• Numerical values of optimal control function
parameters of relevance to a particular case study
forest with the species picea Abies have been
determined.

• Generalized versions of the method can be used
to optimize management of multi species forests, 
also with stochastic prices and adaptive decisions, 
as shown by Lohmander [1], [3] and [4].

• The readers are encouraged to use the 
methodology to optimize management of
continuous cover forestry in all regions of the 
world.
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Thank you very much for 
your time and a most 

interesting conference!
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