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The mixed strategy n-person (in particular two person) games have been given much
attention in the literature. When all participants have complete information concerning
the pay off matrix and all strategies are well and unambiguously defined, the reported
standard solutions are relevant and each participant may calculate the optimal
probabilities of the different decisions. In most real world situations. however, the
elements of the pay off matrix can not be assumed known. In this analysis, each actor
optimizes the pure or mixed strategy continuously and marginally, depending on the
latest observed decision frequencies of the other actors. A general Iwo person non-zero
sum game (with zero sum as a special case) is investigated in this way. Under typical
assumptions in “games of conflict”’, the dynamic solution turns out to be a “constrained
eyclical orbit™. Hence, it is argued, it is likely that the decision probabilities of the actors
in real world games in Nature and in the economy change periodically. A duopsony
application where two sawmills are competing in the timber market is included and the
dynamics is investigated.
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1. INTRODUCTION

How will participants, players, in a “*game” change behaviour over time
in situations when they do not know how the different participants are
affected by different possible actions taken by the other players. This
general question will be addressed in this paper. Typical applications may
be found in economics and ecology. Particularly where there is a small
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number of participants, or classes of “typical participants™ that act in
approximately the same way within the class, the theory should be useful.

Some typical market situations to be handled within this framework
in economics are oligopolies and oligopsonies, in particular duopolies
and duopsonies.

2. GAME THEORY, A FRACTION OF THE
LITERATURE AND SOME REFLEXIONS

The classical book on game theory is Luce and Raiffa (1957). This is
extremely well written and contains everything from utility theory and
many important game problems to mathematics and numerical
methods. Of course, Luce and Raiffa did not open a completely new
field. Large parts of the theory can also be found in von Neumann and
Morgenstern (1944).

Some, but far from all. of the earlier papers of special relevance to
the issue treated in this paper are the following:

Cournot (1838) presents a revolutionary contribution to the theory of
non cooperative equilibria in oligopoly situations. The ideas of Cournot
will partly be used later onin this paper. Luce and Raiffa [22], however, do
not mention Cournot at all. Rasmusen [34] pg. 76 -78 has rediscovered
him. Flim and Moxnes [14] interpreted the central idea of Cournot as the
basis of a dynamic game and developed this theory. Compare also
Cavazutti and Flam [8], Flam [13] and Flam and Zaccour [15].

¥on Stackelberg [35] and [36] is one of the persons who has
contributed to game theory before the concept was established. In
particular, he was interested in dynamic duopoly theory. A nice
simultaneous treatment of the theories of Cournot and von Stackel-
berg is found in Henderson and Quandt [17] in Chapter 8.

Nash [24] and [26] gave us the important concept ‘““Nash
equilibrium™. In a Nash equilibrium, no player has incentive to
deviate from his strategy as long as the other players do not deviate
from their strategies. The Nash equilibrium has been very useful in
most developments of game theory. Some recent refinements of the
definitions can be found in Mverson [23].

Brown and von Neumann [5] discussed how to use differential
equations in the solution of games. Robinson [31] used an iteration
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method where each plaver sequentially estimated the probability
distributions of the other players decisions and adapted the own
decision probabilities optumally. Brown [4] investigated a problem
similar to the problem in Robinson [31]. Bellman [2] continued the
studies of iterative algorithms and so did von Neumann [33].

Luce and Raiffa [22] and the earlier authors, mainly treated games
that could be classified as static and stationary in the following sense:
The economic conéequences of different decision combinations were
the same over time. The position in time and/or some physical state
space did usually not matter.

Dresher [12] stressed the time dimension and optimal decisions over
time in connection to several games of conflict.

Isaacs [20] took the step towards a complete description of the time
and physical state space. He introduced the theory and several
applications of differential games and the sometimes more numerically
practical approximation method “difference games™. Suddenly it was
possible to determine the optimal behaviour over time and space in
typical dog fight games of the air force and similar conflicts. The true
dynamics had entered the game scene. The three dimensional graphs of
the optimal paths of the air planes were tremendous.

However, some problems remained also when the differential games
had appeared. First of all, which has become obvious in many applied
mathematical problems, we have to restrict the state space in order to
be able to handle the numerical calculations in finite time. In difference
games, the number of possible positions increases very rapidly with the
state space resolution and the size of the area to be represented.

In many cases, it is necessary to calculate the optimal behaviour of
each player for each possible position in the physical state space and
speed vector and for each possible positions(s), speed vector(s) and
decisions(s) of the other plavers(s). The problem is then solved
recursively in the spirit of dynamic programming for every player
conditional on the behaviour of all other players. In fact, in a two
person difference game, if the decisions of player B or their probability
distribution are known by plaver A and the decisions made by player
B are not affected by the decisions made by player A, then player A
may regard his optimization problem in the difference game as a
common dynamic programming problem. This, however, 1s a very
special case where we do not really investigate games anymore. We
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then have a “game against Nature™. The dimensionality problem in
dynamic programming is well known. In difference games, the
dimensionality problem is much worse!

Then, what can be done?

If we accept low resolution in the state and time space and a low
number of possible decisions (controls), then the difference games can
often be rapidly solved. Furthermore, we usually have to assume that
the game is deterministic: Each player selects a pure position
dependent strategy. If we let the players use randomized strategies,
make different decisions with different probabilities in different
situations, then the computation time grows very rapidly.

One observation concerning the deterministic differential or difference
gameis that the outcome is known when the initial conditions are known.

One may argue that solutions of differential equations may be
chaotic and that the future state is not predictable. This discussion will
not be continued here. The interested reader is suggested to read
Prigogine and Stengers [28], Gleick [16] and Puu [29]. In order to solve
chaotic differential game systems, it seems necessary to estimate
probability density functions of the chaotic outcomes and then treat
the problem as a stochastic differential game.

In a deterministic differential or difference game, each plaver knows
exactly what to do and what the other players will do in every possible
situation. There is really no need to play the game. For this reason, we
may say that we know the outcome of a game of chess as soon as we
know what person starts the game with white color.

Of course, in reality, the players do not know much enough or have
time enough to calculate the optimal decisions in all possible positions.
This is true in chess and in most real world games of some interest. In
particular, we should note that the rules of the physical movements
(the speed and the possible directions) of the horse or the queen in
chess are known exactly by the two plavers. In real world conflicts, the
technical properties of the equipment and the exact positions of the
army units may not be known by the opponent. In other kinds of
conflicts in a complicated society, the options available to the
opponent are frequently very difficult to estimate.

Some highlv simplified early differential equation models of
conflict with historical comments can also be found in Braun [3] on
page 396—-411.
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Game theory is relevant where there is life and where decisions are
made by several organisms with different objectives that influence the
same syvstem. Thus, game theory has invaded economics, ecology and
the military.

Graduate courses in economics often include some game theory.
Chiang (1974) includes a chapter on standard two person zero sum
games which unfortunately for some reason has been excluded from
later editions. Rasmusen (1990) presents a wide spectrum of game
models from economics and related fields but avoids the level of
technical detail found in many other publications. The game models
found in economics applications are frequently found also in ecology.
However, in recent years a large fraction of the ecological game theory
has been devoted to the concept of evolutionarily stable strategies.
Will a strategy “‘survive” in the long run in competition with other
strategies? Several interesting results have been reported in this area.
See in particular Axelrod and Hamilton, Hofstadter [19], Hines [18]
and Boyd and Lorberbaum [6].

The following observations can be made:

~In many real world games in economics, ecology and warfare, the pay
off consequences (in economic problems such as profit or in
ecological problems such as probability of reproduction) of a
particular decision combination are not independent of the plavers
positions in time and space. We should in these cases prefer to use
game models where time and space are represented if this does not
cost too much in the unit of calculation effort. As mentioned,
however, such models often become very ‘problematic from many
points of view.

—In many real world games. we can not expect that the players know
very much about the other players decision options or how the other
players valuate different decision combinations.

—In many real world cases, the physical and economic environment of
the game problems change rapidly and often unpredictably. One
player may own a factory which produces a particular product. If the
price of the product is high, this player may be very interested to buy
a unit of some input factor. The input factor transaction may be a
game in which the factory owner participates among other potential
buyers. In this case, the factory owner highly valuates a decision
combination which means that he may buy the input factor. One
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month later, the price of the product decreases dramatically. Again.
the factory owner participates in a similar transaction game. This
time he does not valuate a decision combination which makes him
buy the input factor very highly anymore.

Since the economic environment unpredictably changes in this
game, we can not expect that the players will select the same strategy
for ever. Hence, we:can not be sure that a plaver who estimates the
probabilities of other players decisions via the frequencies in the
complete historical decision observations series, and optimizes his
strategy accordingly, will optimize his expected result in the changing
environment. Robinson [31] utilizes the complete historical decision
observation series.

We should in many cases prefer game models that are based on the
following assumptions:

—~Each player knows how he, or his enterprise. is affected by each
decision combination.

~The players de not known how the other players are affected by
different decision combinations.

—The players sequentially observe the decisions made by the other
players.

—Each player estimates the probabilities that the other players make
different decisions using only the latest N observations. N is a
number which 1s small enough to make sure that only observations
from the latest and relevant time period are used. N should be large
enough to make sure that random variations are not interpreted as
strategy changes.

To sum up: Each player uses only locally available and late
(relevant) frequency information in the decision process.

3. COOPERATION OR CONFLICT IN THE TIMBER
MARKET: A DUOPSONY DISCUSSION

Two sawmills buy timber from a large number of independent forest
owners in an area. In this example we may interpret the forest
industry input “timber™ as a simple way to denote the content of what
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a forest industry company frequently buys, namely the right to harvest
a forest stand including special agreements. Of course, the theory
developed below should be relevant also in many other duopsony
problems.

Every time a unit of timber is available, the forest owner receives
sealed bids from the potential buyers. Clearly, this is a case where the
buyers as a group may benefit from cooperation and low bids. The
extra profit obtained via the low timber price may then be distributed
between the buyers in some way. One example of a distribution
principle is the Nash bargaining solution. Compare Nash [25] and [27].

In some cases, the strongest sawmill (in the sence of ability to
survive high timber prices) may prefer not to cooperate and “destroy™
the input market of the other sawmill via high bids. This way, both
sawmills loose profits during some time period and the weakest
sawmill is closed down. Then, the strongest sawmill has the option to
use his monopsony power and to increase his profits even more than
before via low timber prices.

The sawmill example contains two kinds of solutions:

In the cooperation case, we may expect the sawmills to calculate the
timber price which maximizes the profit of the two sawmills as a
group. Then they distribute the extra profit somehow within the
group. Sometimes we may expect that the sawmills decide not only the
timber price but also the distribution of the timber. The forest owners
may not notice this cooperation directly. They may notice that all bids
are low or that only one of the sawmills gives a bid on each unit of
timber. or finally, that one sawmill gives a low bid and the other
sawmill gives a very low bid on each timber unit. In the latest case, the
very low bid is there just to hide the cooperation from the sellers. It
does not affect the plan of the buyers anyway.

In the “timber price fight case™, the timber price bids are high until
one of the buyers leaves the market. Then the bids instantly fall and
the low price level remains until increased competition appears.

Capen, Clapp and Campbell [7] have written a rather different but
very interesting article on the optimal bidding level in another
“resource sector’”’. oil. In their problem, the greatest difficulty is to
estimate the value of the oil field parcels. Clearly, it is easier to observe
the trees above ground than the oil below the surface. The value
estimations should be more correct in forestry.
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Let us now turn to a third and more interesting case:

The buyers do not cooperate because they do not believe that the
other buyers will keep an agreement. Maybe they are also aware that
the government will discover market cooperation and punish cartels.
Hence, the buyers act according to the law and sometimes deliver
sealed bids.

When they decide to give a bid, they first have to inform themselves
about the quality of the timber and other practical details. This
activity 1s not costless. Then, they have to decide the level of the bid.

Of course, they can give a low bid and hope that the other sawmill
will not give a higher bid. In that case, they will buy the timber
cheaply. If they have bad luck. the other sawmill buys the timber with
a higher bid and the only economic consequence of the activity is the
cost of the investigation.

On the other hand, they may give a high bid and hope that the other
sawmill will give a lower bid. The probability of obtaining the timber is
of course higher in this case, but the price is also higher.

This last version of the game 1s interesting in several ways and the
methodology to be used in the analysis is not obvious. Each player has
in the example two different possible decisions: A high (H) or a low (L)
bid. The players may be denoted by A and B.

If the sum of the total profit (the sum of the game) made by the two
players is zero (or a constant), it is obvious that no cooperation will
appear. Note that the profits of the players in this game are functions
not only of the timber price but also of the resulting timber transactions
and profits in the sawmills. The calculation of the profits conditional on
the possible decision combinations is a complicated matter.

If the players know all the economic consequences for both players
of all decision combinations exactly, then we can use the classical an
well known two person zero sum game theory found in Luce and
Raiffa [22] and Chiang [9]. The optimal strategies may turn out to be
pure (only one decision) or mixed strategies for each player where a
mixed strategy means that different decisions should be made with
different probabilities. These optimal strategies. the probabilities of
different decisions. can be calculated via linear programming.

If, which is frequently more likely, the sawmills have no (or very
limited) information concerning the economic consequences in the
other sawmill of different decision combinations, then it is not possible
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to calculate the optimal strategies directly via the traditional methods,
such as linear programming.

Then, what should one do?

One obvious way for player A to deal with the problem is to observe
and estimate the frequencies of the different decisions taken by player
B. Then, player A maximizes his expected profit conditional on the
decision frequencies of player B. Player A now plays the optimized
strategy and plaver B observes and estimates the frequencies of the
decisions made by player A. Most likely, the optimal strategy of player
B is conditional on the strategy of plaver A. Hence B optimizes his
strategy conditional on the latest frequency observations. Player B
plays the new frequencies and player A soon changes strategy again.

Note that the profits of the two players are functions of many
different physical and economical conditions except for the decision
combination of the *“‘game”. These conditions include capacity
constraints, sawn wood prices and labour costs, things that often
change over time in a way which is not perfectly predictable by any
player.

Thus, even if the economic consequences of different decision
combinations are known exactly by both plavers, the sum of the game
is constant and a linear programming solution can be calculated, it is
not obvious that the derived strategies are optimal in later time
periods. Compare the article by Kreps and Wilson [21] on sequential
equilibria.

Robinson [31] has showed that if each player estimates the
frequencies of the decisions made by the other player and then
optimizes the own strategy conditional on the available information,
then the solution converges to the solution obtained via linear
programming.

In a changing environment, it is important to adapt rapidly, the
question is only how rapidly. If A observes that B makes a particular
decision 5 times in a row, — Is this an indication that B has started to
play a pure strategy or is it just a quite possible sequence of
observations with low probability? Maybe B still plays a mixed
strategy with two different decisions, each with 50% probability?

~How many earlier observations of the other players decisions should
be used in the frequency estimations? Of course. il only a few
observations are used, the frequency estimations are more rapidly
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affected by a changing strategy used by B and A can optimize the
strategv conditionally, On the other hand, if the number of
observations of the decision sequence is too small, stochastic short
term variations may be interpreted as strategy changes by the other
plaver even if they are not. This, in turn, may lead to a new
conditional strategy which is not optimal conditional on the true
strategy of the other player.

4. THE ZERO SUM GAME AND IMPORTANT
CONSEQUENCES OF THE IMPLICIT
AND HIDDEN INFORMATION ASSUMPTION

Let us start by discussing the two person non cooperative game. In a
very special case, the sum of the profits, the total pay off. of the two
players is constant (it is not a function of the decision combination).
Such games can be described and treated as “zero sum’ games if the
sum of the profits is reduced by the constant. The profit of one player
1s the loss of the other. Of course, we can not expect cooperation to
appear is such a game. We have a simple game of conflict.

The definition of the zero sum game and the calculation of the Nash
equilibrium via graphical methods and the simplex method can be
found in Luce and Raiffa [22], Chiang [9] and many other standard
books.

The two person zero sum game is often the only game that the
student has time to learn. Unfortunately, the game has some very
special properties of great importance to relevance and solvability:

In the zero sum game, each player knows exactly how the other
player is affected by different decision combinations as long as he
knows how he is affected by the combinations himself. This means that
player A in principle can calculate exactly how player B will react
under the assumption that B optimizes his behaviour conditional on
the behaviour of A.

In a game which is not a zero sum game, player A does now know
exactly how plaver B is affected by different decision combinations
without a lot of special information concerning the (economic and;or
maybe physical or biological) environment of player B.
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Most importantly, if we make the model assumption that we have a
zero sum game, this is not only a restrictive assumption concerning the
pay off matrix which is seldom relevant. It is first of all an assumption
that both players known very much (almost everything of relevance to
economic decisions) about each other and that very simple methods
can be used to determine how they will and should behave.

Now., let us turn to the pay off matrix.

A general two pérson non constant sum game will be analysed. As a
very special case, we have the two person zero sum game discussed
above. The Nash equilibria of this game can be calculated via the
methods found in for instance Rasmusen [30]. We will not assume that
the players know exactly how the other players are affected by
different decision combinations. Each player however observes the
frequencies of the decisions taken by the other player.

5. CONCEPTS, DEFINITIONS AND GENERAL EQUATIONS

Let u(i.j) and v(i.j) denote the pay off’s that players A and B get
respectively if player A makes decision i and player B makes decision j.
x(7) denotes the probability that player A makes decision 7. y{j) is the
probability that player B makes decision j. We assume that each player
has to possible decisions, 1 or 2. In order to simplify notation, we let
X =x(1)and ¥ = y(1). Since the sums (x(1) + x(2)) and (y(1) + »(2))
must be equal to one, the coordinate (X,Y) in the two dimensional
probability space reveals everything about the possibly mixed
strategies used by the two players. Let the expected pay off's received
by the players A and B be denoted by U and V.
These can be calculated as:

U= (u(1,1)Y +u(1.2)(1 = YNX+ u(2,1)Y )
+u(2,2)(1 = Y))(1 - X) ‘
= (W1, DX+ v2, 1)1 =X Y+ (v(1.2)X

- . : (2)
F(2.2)(1 = X)(1 = ¥)

A continuously observes Y and B continuously observes X. Each
plaver continuously adjusts his probability (X or Y) to the latest
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information. The marginal expected profits, dU/dX and dV/dY. can
be calculated as:

dU/dX = (u(1.2) — u(2,2)) + (u(1. 1) + u(2,2)

(3)
—u(1,2) —u(2,1))Y
dVidY = (v(2,1) — v(2,2)) + (v(1,1) + v(2,2) 4
-v(1,2) —v(2,1))X :
Obviously, notation can be simplified as:
dUjdX =m +m:x Y (5)
dVidY =m +nyx X (6)

The adjustment speeds. dX/dt and dY/di, are assumed to be
proportional to the marginal expected profits of each player. Let us
denote the proportionality constants by ¢ and h.

dXjdi = g + dU/dX (7)

dYjdt = h+dv/dY (8)

This gives us a dynamical system where ma, my4, n2 and ng are new
parameters:

dX/dt =ma+my=Y (9)

dY/dt =n3+ng* X (10)

The system is in equilibrium when (X,Y)= (Xy, ¥y) = (—n3/na,
—mj3/mq). Let us denote deviations from equilibrium by (X, Y) where
X=X - Xy and Y= Y — ¥}. Using this notation, we can rewrite the
dynamical system as:

dX/dr =my Y (11)

dY/dt = ny x X (12)
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Again, we simplify notation. Let m = my, n = ns. Now, the time
derivatives of the deviations from equilibrium, dX/dt and dY/dt, can
be written as:

dX/dt = my (13)

dY /dt = ny (14)

6. DYNAMICS AND A SIMPLE ZERO
SUM GAME AS ILLUSTRATION

Let us determine the dynamical properties of the mixed strategy game,
initially investigating a very special case, namely a two person zero
sum game:

((1.1), u(1,2), w(2,1), u(2,2))=(-1.1,1, 1) (19

(v(1,1), ¥(1,2), »2.1), #2,2))={(1, -1, =1, 1} (16)
Making use of the derived equations, we get:

dU/dX = +2 — 4Y (17)

dV/dY = -2 + 4X (18)

The dynamical system becomes

dX/dt = +2g — 4gY (19)

dY/dr = —2h + 4hx (20)

We find that the system is in equilibrium when (X, Y) = (X;, Yy)
= (1/2,1/2). Deviations from equilibrium are denoted by (X.Y),
where X=X —1/2 and Y = Y — 1/2. We have:

dX/dt = —4gY (21)
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dY/dt = +4hX (22)

For simplicity, we initially assume that g = A. Let a new constant
3 = 4g = 4h, Now. we get:

dX/dt = —3Y (23)

dY/dt = +3X (24)

A family of solutions of the differential equations system, where z is an
arbitrary positive constant, is:

X = ¢hg (31 (25)

Y = = sin (31). (26)

It is well known that (X, Y) will stay on the same distance (z) from the
equilibrium for ever. The system does not converge to or diverge from
the equilibrium. This 1s called a “center” in the theory of dynamical
systems.

More generally, the adjustment speed coeflicient g is not always the
same as . We can take care of this phenomenon via the introduction
of one more constant, a. As long as g and / have different signs, we
can always express the differential equations system as:

dX/dt = —(1/0)3Y (27)

dY /dt = +{a)3X (28)

The reader may verify that the following equations represent a family
of solutions of our new differential equation system:

X =z cos (Bt) 29)

Y = az sin (31) (30)

Also this family of systems has periodic solutions that do not converge
from or diverge to the equilibrium except in the sence that the orbit
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may be oval (a different from 1) and that the distance from (X.Y to
the equilibrium periodically increases and decreases. The interested
reader may study the general principles of dynamical linear systems in
the plane in Clark [10] or with a higher degree of detail in Braun [3].

7. THE NON ZERO SUM TIMBER MARKET
DUOPSONY GAME

Consider the following pay off matrices:

(w(1,1). u(1.2). u(2.1), u(2,2))= (0,0, 0.8, —0.2) (31)

1,1y, ¥(1,2), »(2.1), ¥(2,2)=(18, 0.8, 0.2, 0.8)  (32)

These assumptions make sence in the following game: There are two
sawmill firms more or less actively involved in the timber market area
of the game and a large number of independent forest owners. The
forest owners sometimes have timber to sell and they ask for sealed
bids from the buyvers. One of the sawmills, B is close to the area where
the forests are located and has a big and very timber consuming
sawmill. For these reasons, B always participates in the “bid games™
and contributes with a low (L) or a high (H) bid. In every particular
game, L means that the bid is consistent with a lower than average
price and H represents a higher than average price.

Sawmill A, on the other hand, has a small sawmill which is located
far away from the forests. Player A does not need very much timber
and buys some of his timber in places closer to his mill. He has two
possible decisions in each game: He does not participate at all (N) or
he participates and gives a bid which is somewhere between the low
and high bids given by sawmill B, a medium bid (M).

What are the possible outcomes?

If A does not participate, N, then B buys the timber irrespective of
the bid level he choses (L or H). If A participates, M, then A buys the
timber if B makes decision L and B buys the timber if B makes
decision H.

What are the economic consequences of the different decision
combinations? First of all, every player that participates investigates
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the object to decides the value. The cost of this investigation including
other possibly necessary costs of participation is 0.2 (money units) in
the example. The “‘shadow’ value of the timber in the sawmill of
player B is 2 units higher than the low bid of B and 1 unit higher than
the high bid of the same player. Since A must undertake more
expensive transportation etc., the shadow value of the timber in the
enterprise of player A is only one unit higher than the medium bid
sometimes given by player A.

The economic consequences of the different decision combinations
may be presented in the following form:

Decision combination A gets B gets
with numerical indices

(N and L)=(1, 1) +0 +1.8

(N and H)=(1, 2) +0 +0.8

(Mand L)=(2,1) +0.8 - 0.2
(M and H)=(2,2) — 0.2 +0.8

The reader may verify that these consequences are consistent with
the text and the pay off matrixes given in the introduction of this
example. The assumptions imply;

di/dX =+02-1Y (33)

dV/dY = —1 +2X (34)

We find that the equilibrium is (X, ¥5) = (0.5,0.2). Let the
adjustment speed coefficients be g = h = 1. Then, we get the following
dynamical system of the deviation from equilibrium:

dX/dt = —1Y (35)

dY/dt = +2X (36)

Let us calculate the parameters o and 3 to determine the time path of
the svstem:

—(l/)8  =-1 (37)
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The solution of this system is a=3=+v2 or a =3 = —+/2. The
system follows a pair of equations that belong to the following family:

X =z cos (31) (39)

Y = az sin (31) (40)

where (X.Y) denotes deviations from the equilibrium (Xp, ¥y)
= (0.5, 0.2). Note that the time path of this system is the same if
a=38=+v2 as if a=3=—v2. If we select the negative value,
however, time moves backwards in our equations. Later on, when we
analyse the effects of the probability constraints on the dynamics of
the strategy combination, time becomes irreversible in several cases.
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As long as the constraints are not affecting the time path, time may go
backwards. Compare the interesting the related discussion in
Prigogine and Stengers [28]. Finally:

(X.Y)=((0.54+=zcos (31), (0.2+ azsin (31)) ) (41)

The reader can verify that the computer generated graphical solution
in Figure 1 supports this conclusion as long as the equations do not
force the system to leave the feasible set.

So, it seems that we should expect the two playvers to move around
for ever in an oval orbit that in a special case is a circle, continuously
adjusting the probabilities X and Y. However, as we know, (X, ¥ ) may
not leave the unit square in the positive quadrant. A natural
reformulation of the original dynamical system is:

Y dY/dt = (

= dX/dt = 0

00 4 e~ - X

g.¢ o©.t 0.2 0.3 0.4 0.5 0.6 0.7 G.E 0.9 1.0

FIGURE 2 Decision Probability Trajectories {uyy, a2, ti, w22 ={0,0,.5, -5} {viy, va.
wap vk = 135,8, 5,5}
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Y dY/dt = 0

N

- 4"’" dX/dt = 0

\'
L. -
LA B Ll T L] T 1

0.0 ¢.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FIGURE 3 Decision Probability Trajectories {wi. 13, uzp, 622 =10,0,1.3,-.2}
v, vz, v, v} ={1.8, .8, -2, .8}

Differential equation Condition

dX/di =0 if X=0and g+dU/dX <0
dX/di = g % dU /dX if X=0and g +dU/dX >0
dX/dt = g+ dU/dX ifo< X <1 (42)
dX/dt =0 if X=1and g=dU/dX >0

dX/dt =g+dU/dX  if X=1and g+dU/dX <0

dY/dt =0 if Y=0and hxdV/dY <0
dYjdt=h=dV/dY if Y=0and h=dV/dY > 0
dY/di = h=dV/dY if0< ¥Y<1 (43)
dY/di = 0 if Y= 1and hxdV/dY >0

dY/dt = h=dV/dY if Y=1and h+dV/dY <0
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Y dY/dt = @
5 T
0.9 J
0.8 |
0.7
0.6

0.5 J

0.2 .

== dX/dt = 0

0.1 4

1

T L

e.0 0.1 0.2 0.3 0.4 0.5

)’\
Caan ™ 1

0.6 0.7 0.8 0,% 1.0

FIGURE 4 Decision Probability Trajectories {m11, uiz, w21, 4} ={0,0..8,-.2}
. Vi, v, ¥} =128, 1.8, -2, 18}

The equations mean that X" and Y continuously are adjusted in the
“most profitable’ directions as long as the movement does not take
the system out of the feasible set, the unit square in the first quadrant.
The graphical result, the trajectories found in Figure 1., show the time
path of the strategy combination (X, ¥'). The time path of the system
has been plotted for the same 6 initial conditions in the Figures 1-4
The positions of the system after 3000 time units are marked with
small circles. The time units are short in relation to the adjustment
speed coefficients. g and # have been given the value 0.002.
We can make the followng observations in Figure 1:

Region a
Sawmill A frequently does not participate, X > 0.5. and sawmill B
almost always gives a high lid, ¥ < 0.2.
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B most of the time gets the timber even if only the low bid is given.
Hence, B increases the frequency of the low bid. A almost never gets
the timber even if A participates. Hence, A decreases the frequency of
participation even more. The system is moved upwards and te the
right and soon reaches Region B.

Region b
Sawmill A frequently does not participate, X > 0.5, and sawmill B
frequently gives a low bid, Y > 0.2

B most of the time gets the timber even if only the low bid is given.
Hence, B increases the frequency of the low bid. When A participates,
he often gets the timber and hence finds it profitable to participate
more often. The system moves upward and to the left, finally reaching
Region c.

Region ¢

A often participates, X < 0.5, and B often gives low bids, ¥ > 0.2.
Since B frequently gives low bids, A finds it profitable to participate

more often. B discovers that he has to increase the frequency of high

bids in order to get any timber since A participates most of the time

with his medium bid. The system is moved down to the left. reaching

Region d.

Region d
A participates most of the time, X < 0.5, and B gives high bids most of
the time, ¥ < 0.2.

A realizes that he does not buy timber very often anyvmore but that
he has to pay the expensive timber investigations anyway as long as he
participates. He decides to participate more seldom. B still finds that A
participates rather often and that he can increase the amount of timber
he buys if he increases the high bid frequency. The system is moved
down to the right and finally reaches Region a again.

Observation 1

The Nash equilibrium solution, (X.Y) = (0.5, 0.2). will never be
reached unless that happens to be the initial condition of the
svstem.,
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Observations 2

If the system follows a trajectory, an orbit or a center. that passes
through the four different regions without touching the boundary of
the feasible area. then the system will follow this orbit for ever.

Observations 3

If the system follows a trajectory that somewhere touches the
boundary of the feasible area, then the svstem will follow the
boundary for some time. Finally, the system will start to follow an
attractor, a ““center”’, for ever. This attractor will be the largest center
than can be constructed around the equilibrium, without touching the
boundaries, which is consistent with the unconstrained differential
equations. Note that most of the small circles in the Figures 1 — 4 have
been trapped for ever in the respective attractors.

8. DYNAMIC SENSITIVITY ANALYSIS
OF THE TIMBER MARKET GAME

Now, we will partially modify the assumptions concerning the
economic environment of the two firms in the game.

Case |

Assumptions: According to the duopsony game formulated above.
Equilibrium: (X Y) = (0.5. 0.2)

IMustration: Figure 1. The equilibrium of Case 1 is marked with a star
and used as one of the initial conditions in Cases 1 — 4. This way it 1s
possible to see how a system, initially in equilibrium. dynamically is
affected by changes in the parameters.

Case 2

Assumptions: As in Case | except for that the investigation cost in the
game is 0.5 units for every participant.

Equilibrium: (X. Y ) = (0.5.0.5)

Tlustration: Figure 2

Observations: In equilibrium, A will participate in the game as
frequently as in Case 1 but B will on the average give lower bids.
Trajectory from the equilibrium of Case 1: Player B is happy with his



MIXED STRATEGY GAMES 49

old frequency 0.2 as long as A goes on with his frequency 0.5. In
50% of the games, B increases his profit by 1 unit via decision 2 and
in 50% of the games. he decreases the profit by the same amount.
However. in the new cost situation, A finds it too expensive to
participate every second time. He does not get the timber in more
than 20% of the games where he decides to participate, namely when
B gives low bids. If he gets the umber, (which seldom happens), then
he earns no more than what he looses if he does not get the timber
(which 1s the more common result). Hence, A decreases his
participation and starts a more or less circular orbit of the system
which almost always will be located above the old equilibrium. The
qualitative behaviour of the system will be the same as in Case 1. but
the new equilibrium will be found above the old equilibrium. The
trajectory will take the system to the old equilibrium one time per
period but it will never stay there.

Case 3

Assumptions: As in Case 1 except for that the variable unit production
cost decreases in sawmill A and/or the price of the sawn wood
produced in sawmill A increases. The net profit of player A increases
by 0.5 units compared to Case 1 if A gets the timber.

Equilibrium: (X, Y) = (0.5, 0.13)

[llustration: Figure 3

Observations: In equilibrium, A will participate in the game as olten as
in Case 1 but B will more often give high bids.

Trajectory from the equilibrium of Case |: Plaver A starts the
movement from the old equilibrium and the system will most of
the time be found below the old equilibrium. Plaver B is satisfied with
the old equilibrium. It can be shown that B can not increase his
expected pay off through changes in his probability Y. On the other
hand, it is now more important to A to get the timber than before. He
finds it profitable to participate more often than in Case 1 as long as B
continues his strategy. Hence. A pushes the system to the left.
Suddenly, B finds that he has to increase his frequency of high bids in
order to optimize his expected pay off. The system is moved down to
the left. Soon. A notices that the expected bid of B is higher than
before. A does not get very much timber anymore. B continues to
increase his high bid frequency. A participates less often and the
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svstem moves down to the right. Now. B plays high bids all the time
and A decreases his participation even more. B notices this and
discovers that he gets most of the timber also when he plays low bids.
The system is moved upwards to the right. When the frequency of low
bids is high enough, A decides to participate more often. The system
goes back to the equilibrium of Case 1.

Case 4

Assumptions: As in Case 1 except for that the variable unit production
cost decreases in sawmill B andior the price of the sawn wood
produced in sawmill B increases. Hence, the net profit of player B
imcreases by 1 unit if B gets the timber compared to Case 1.
Equilibrium: (X. ¥'j = (0.67, 0.2)

Ilustration: Figure 4

Observations: In equilibrium, A participates less frequently than in
Case 1 and B gives the same expected bid level as in Case 1.
Trajectory from the equilibrium of Case 1: Player A is satisfied in the
equilibrium of Case 1 but B wants to increase his proportion of games
where he wins the timber. Thus, B moves the system downwards,
increasing his frequency of high bids. Because the probability of
winning the timber is lower than before, A reduces his participation.
The svstem moves down and to the right. In the illustration, B reaches
the boundary where he plays the high bid all of the time. A continues
to decrease his participation and soon the system is “trapped” in the
oval attractor which is tangent to the boundary of the feasible set. A
will always participate less frequently and B will on the average give
the same bid level as in the equilibrium of Case 1.

9. PERIODIC SOLUTIONS AND THE PROPERTIES
OF THE PAY OFF MATRIX

So far, we have just assumed the values of the pay off coefficients. In
the suggested examples, the solutions have been constrained prob-
ability orbits. Let us investigate the pay off conditions to be expected if
we observe periodic decision probability changes.

We already know that (Xg.Yp) = (—n3/ng, —msz/my) = (—n1/nz,
—my /m;). If we want to get cyclical solutions, we want the signs of ny
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and my to be different (Compare Equations (27) — (30)). This means
that the signs of n; and m> are dfferent as long as both players have
strictly prositive adjustment speed coefficients. Let us here make the
restriction that n; is positive and that m, is negative. Since the names
of the players have not been decided, this assumption is not restrictive.
Since we want (Xp. ¥y) to be found inside the feasible area, we have:

(0« Xy < 1) implies: 0 < —n;/ny < 1 (44)

(0 < Yo < 1) implies: 0 < —m/mz <1 (45)

Here, notation is again simplified and u;; and v; denote u(i, ) and v(i,j)
respectively.

{Xo < 1) implies : (vao —vay)/(vii +v2 —viz —v2) < 1 (46)

Since n2 > 0, we can write:
(va2 — v21) < (v11 +v22 — vi2 — va1) (47)

and finally:
0 < (v —vp2) = =1 (48)
This means that player B prefers the decision combination (1,1) to (1,2).
(0 < Xp)implies : 0 < (vaa — vz )/ (v11 + va2 — vi2 — v21) (49)
Let us rewrite this expression:

0 < (vaz — va1)/(va2 — va1 + 21) (50)

Since z; > 0 and we want the condition to hold for all positive values
of zy.(vaz —v3) > 0. This means that player B prefers decision
combination (2,2) to (2,1).

We conclude these findings the following way: Player B prefers to
play the same decision index as player A. If A plays i =1, then B
wants to play j= 1. If A plays i = 2, then B wants to play j=2. In
other words, Player B prefers to be on the “main diagonal™, (1,1) and
(2,2) of the decision matrix.
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(Yo < 1) implies : (w22 — wya)/(up + 22 — ujp — uzy) < 1 (51)
We initially assumed that m2 < 0. Thus:
(u22 — t12) > (U + 22 — up2 — u21) (52)
After simplification, we get:
0> (u —uz2) =22 (53)

which means that A prefers decision combination (2,1) to (1,1).
(0 < Yp) implies : 0 < (w22 — wia) /{1y + w22 — w2 — uzp) (54)
This can be rewritten as:
0 < (12 — u12) /(U2 — w2 + 22) (55)

Since z; < 0 and we want the condition to hold for all negative values
of z;. this means that ux < us.

To sum up: Player A prefers (2,1) to (1,1) and (1. 2) to (2. 2). In
other words, Player A prefers to be off the main diagonal of the
decision matrix.

Observation 4

We sometimes have a game where conditions c1. and c¢2. are satisfied:

cl. Each player optimizes his expected pay off via a mixed strategy
conditionally on the decision frequencies of the other player. In
the mixed strategies, every decision should have a strictly positive
probability.

c2. The differential equation system governing the simultaneous
optimal adjustments of the decision frequencies of the two players
give cyclical solutions, sine and cosine functions.

cl and c2 are consistent with a situation where the different players

prefer decision combinations on different diagonals of the decision

matrix. One of the players prefers to adjust the system to the main

diagonal and the other player prefers to adjust the system to the other

diagonal.



MIXED STRATEGY GAMES 53
10. DISCUSSION

This paper contains a simple treatment of the dynamics of the non
constant sum (and constant sum as a special case) game where the
players only make use of local information and continuous decision
frequency observations.

It is found that a large number of possible initial conditions make the
decision probability combination follow a special form of attractor and
that centers can be expected to appear in typical games. The probability
that the Nash equilibrium will be the solution is almost zero.

Conditions relating the decision frequencies in equilibrium and the
cyclical but constrained nature of the solution to the pay off’ matrix
properties have been derived.

A dynamic duopsony timber market game has been defined and
studied. In particular, the trajectories of the decision probability
combination, were investigated.

In a special analysis, it was assumed that the system initially was in
equilibrium and that the pay off coefficients for different reasons were
changed. After each parameter change, the system got a new
equilibrium but did not converge to this. The system started a new
orbit, a center, around the new equilibrium.

Real world games are complicated. Hopefully. the reader has found
the analysis in this paper to be a step in the right direction. Useful
theories should approach reality in the long run. When we find a game in
reality where the players use mixed strategies and change the frequencies
over time, we have an indication that the present theory is relevant.

Note

The author has recently become aware that also Shapley (1964)
discovered that periodic solutions are possible in two person games.
Shapley, however, assumed that the players choose a strategy that
would yield the optimum result if employed against all past choices of
their opponents. He claimed that the problems with cycles begin if the
players have three or more strategies available. In the present paper,
only the latest (and presently relevant) frequency information is used,
only two possible decisions per player are necessary to generate the
cyclical results, the frequency adjustment process is different and
several properties of the cyclical solutions are different.
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