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Continuous Extraction Under Risk

P. LOHMANDER

Swedish University of Agricultural Sciences, Umea, Sweden

The problem of optimal intertemporal extraction (harvest) of a resource is investigated. The resource
stock and the price (exogenous) are Markov processes. The expected present value of all future pro-
fits is maximized. The effects of increasing risk in the process inerements in the future on the present
optimal eontrol (the present extraction level) are investigated.

It is proved that increasing risk in the increments of the stochastic price — and growth — processes
may imply higher or lower optimal present extraction.

The results are dependent on:

a Autocorrelation and stationarity in the price process
b The first three derivatives of the extraction cost function
¢ The first three derivatives of the deterministic part of the growth process

The effect of increasing risk in the process increments on the sign of the optimal change in the
present extraction level can be unambiguously determined in several cases.

Foreword

The solved problem stems from the requirement to find an optimal extraction strategy in resource
economics, namely, in forest harvesting. The author aims to take into account both the stochastic
and dynamic features of the problem, and discusses its economic background as well. Through its
actual motivation and interdisciplinary features, the resulting paper is an example that some of
ITASA’s objectives can be met within the framework of the Young Scientists’ Summer Program with
SDS.

ALExXanDER B. KURZHANSKI
Chairman
System and Deecision Sciences Program
International Institute for Applied
Systems Analysis

8 Introduction

1:1. The problem

The question under investigation is whether or not the present extraction level should
increase or decrease under the influence of increasing risk in the stochastic price process
and/or the stochastic growth process.
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The question will be analyzed under the assumption of risk neutrality and it is hence
assumed that the firm maximizes the expected present value of future extraction over a
T period horizon.

The result should be of interest to firms in most resource industries. Typical applica-
tions can be found in the oil, coal and mineral sectors.

However, since both prices and growth are treated as stochastic processes, other ap-
plications are optimal harvesting in agricultural and fishing.

The general assumptions are the following:

— The aim is to maximize the expected present value of all future profits from extraction

— Price is a Markov process, exogenous to the enterprise

— The size of the natural resource stock is a controlled diffusion process, where the
contrel variable is the extraction level.

1.2. Earlier work in the field

The method of dynamic programming was originally presented by BELLMAN [1]. An
early discussion about diffusion processes is given by ITo and McKEax [6]. FrEmiNG
and RisHEL [4] give a detailed presentation of deterministic and stochastic optimal
control. A well written introduction to the theory of optimal control of stochastic dif-
ferential equation systems is given by CHow [2]. :

In this paper we deal with a diffusion process where the living stock grows according
to a stochastic process. The problem of the resource manager is to choose the optimal
harvest level in everv moment. Earlier investigations of similar problems have given
unambiguous results because of very restrictive assumptions about the functional
form of the pay off function and the growth function.

GrErIT [5] investigates a problem similar to the one of this paper. However, he makes
very restrictive assumptions concerning the growth function and the utility function
of the resource owner. According to Gleit, the utility function is of the form (1.2.1)
and the growth function of the form (1.2.2). The profit function is defined in (1.2.3).

U(r) = % (1.2.1)
(= profit, 0 < £ < I}

da, = [K(t)x, — hix,, )] At + z0(t) AW, (1.2.2)
ry=0¢>0

x, = size of living stock at time ¢

k(t) = possibly time dependent constant

h = harvest level

W, = Wiener process

a?(l) = variance of the growth rate

= A(t) h(x,t) — B(t) x (1.2.3)
A(t), B(l) = time dependent constants

The result derived by Gleit is that the optimal present harvest level is an increasing
function of the variance of the growth rate.

T
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In the present analysis it will be demonstrated that;

— The result derived by Gleit crucially depends on the restrictive choice of growth
function, the choice of profit function and the assumption that the uncertainty con-
cerns the growth rate and not for instance the growth.

Furthermore, Gleit assumes price to be deterministic. In the analysis of this paper,
the stochastic properties of the price process are also given attention. In fact, the relative
variations in prices may be much larger than the relative fluctuations in the resource
stock in many cases. This has often been the case in for instance the mineral sector
and the forest sector. (There may be no growth at all in the minerals and the size of the
forest resource generally changes less than a few per cent over a year.)

May, BEppmwagTroN, Harwoop and SHEPHERD [7] investigate the dynamic aspects
of fish and whale populations under density independent and density dependent random
noise that affects the per capita vital rates. They conclude that, “the choice of an optimal
management strateqy clearly involves a decision about the relative emphasis placed on the
magnitude of the yield compared with its stability”. ““The search for such robust strategies
is central to the management of fisheries in an uncertain world.”

Clearly, there are many factors that affect the optimal extraction level under risk.
Let us now turn to the formal analysis of the question of this paper.

2. Analysis

2.1. Yariables and parameters -

WP is ¥ii) Expécted present value of all profits from extraction in the periods
(¢, ..., T] at time (f — 1) as a function of the price and the saved
resource stock at time ¢ — 1 when all future harvest levels[t, ..., T

. are optimally chosen. (P, and @, have not yet been revealed.)

h, harvest level at time ¢.

Y, size of resource stock saved at time ¢ for future purposes.

P, price at time .

Q, size of resource stock at time ¢ before harvest A,

F'(P; |Py_y) probability density function of P, conditional on P,_,.

G'(Q, |¥i-1) probability density function of @, conditional on the size of the
saved stock last period.

éf,&? . stochastic variables that are statistically independent over time.
Furthermore, ¢ and & are independent of each other. E(ef) =
E(s¥) = 0.

D (h,, P, Q) expected present value of all profits from extraction in the periods
[t, ..., T] a time t when P, and (), have been revealed and optimal
harvesting is assumed in period [t + 1, ..., T],

r rate of interest in the capital market.

Vik, P,) profit generated at time ¢t (=FPh, — C\(k,)).

C, (k) cost function at time {.

() expected marginal present value of the resource stock at time ¢

when P, and @, have been revealed.

9 Syst. Anal. 5 (19588) 2
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2.2, The problem

The problem is to maximize the expected present value of all future profits in every
time period.

WiPi, ¥)-1) = [ [ max @ (h, P, Q) F'(P, |P,_,) aP,&'(Q)|

(2.2.1)
X [Q-1 — k1)) dQ,
Py =P (P,t) + ¢ (2.2.2)
Qs = Qi@ — Al t) + & {2.2.8)
In the main part of the analysis, the following specifications are used;
Dby, Py, Q) = e~V (hy, P,) + W (W, P (2.2.4)
where V() is defined as
Vih, P)) = Pk, — Cy(h,) (2.2.5)
and
Y, =@ —k (2.2.6)

2.3. ‘Optimal policy at time t

Just before P, and @, have been observed, the expected present value of the profits
in the periods [t,¢ + 1,..., T — 1, T] is W(P,_,, ¥,_,), which is defined in (2.2.1).
When P, and @, have been observed, the problem is to maximize D,(-) with respect to
the policy variable %,. However, since W, is a function of ¥(=@Q, — &), it is most
convenient to maximize @,(-) with respect to %, and ¥,. This way many useful results
are given explicitly. Hence, the problem in period ¢, when P, and @, are revealed, is
given in (2.3.1). An interior solution is assumed optimal.

max @,(k,, ¥,; P, Q) (2.3.1)
4y, 'y

8.t. .?i-! + !P(E = QE

In the following analysis, the notation will be as simplified as possible.
The Lagrange function corresponding to (2.3.1) is (2.3.2)

L=®h,¥)+ 3(Q —k — VP) (2.3.2)
The first order optimum conditions are (an interior solution is assumed optimal)

L, =Q—-—h—-V¥=0

Ly =@, —2=0 (2.3.3)

Ly=®y—1=0

From (2.3.3) we extract (2.8.4) which implies that the marginal value of present extrac-
tion should be equal to the expected marginal value of the resource if it is saved for
future purposes.

A more explicit form of (2.3.4) is (2.3.5). This equation is obtained through the use of
(2.2.4), (2.2.5) and (2.2.6).
eW o q1(0)

e~ [P, —Cl=4= o,

(2.3.5)

ROl et 7 2 1
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Define [D] as the matrix of second order derivatives.

0 -1 —1
[D]=|—-1 &y O (2.3.6)
—1 0 Dgy

The second order maximum condition is (2.3.7)
|D| = —Puyy — Py, > 0 (2.3.7)
flS&umPtiGn I. @lplp &= 0, ¢)’m < 0

Remark 1. From assumption 1 follows that the second order maximum condition is
fulfiled.

Let us investigate how the optimal choice variables k¥, ¥} and the expected marginal
present value of the resource 4,* are affected by changes in the parameters at time ¢!

Total differentiation of (2.3.3) gives (2.3.8)

[da* —dg, |
[D] dk;" = —@’ip dPt {23.8)
|d¥* | | —Pyp dP,

The derivative of the expected marginal present value of the resource at time ¢ with
respect to the price at time ¢ is obtained through Cramer’s rule,

0 -1 -1
—@p Dy O
. 3 (2.3.9
e | —DPyp 0 Dy l :
7P, = D]
ehf =Dy Py — Dy Dup
= = 2.3.10
7P, D (et

From Assumption 1 we know that @yy < 0, @), < 0 and |D| > 0. From (2.2.4)
and (2.2.5) it is clear that @,p > 0. @Pyp is the derivative of the expected marginal
value of the resource saved for future extraction with respect to the present price.

Assumption 2. The autocorrelation in the price process is nonnegative.

*
Remark 2. From Assumption 2 it follows that @,, > 0. Hence, -gjf;- =
f

The implication of Remark 2 is that the expected marginal present value of the re-
source is strictly increasing in the present price. The result is, however, dependent on the
stochastic properties of the price process.

Should the present harvest level increase when the present price increases ?

0 0 —1
oh} —1 —Dyp Dyy
= - 2.3.11
7P, D] il
ehf  —@yp + Pip
— i 2.3.12
P~ ID| L.

Assumption 3. D,p > Dyp

O
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Remark 3. Assumption 3 is a rather strong assumptions, (D,p > Dyp). Consider
the two period extraction problem

max Ep_ (%) = e 7T V[Pr_ihy_y — Cp_,(hy_,)]

hp—1q
-+ e_’T[ET_I(PT |Pp_y) Qp() — Cp(@r(-))]
s.t. Qp = @p(Qr_y — byp_,)

where 7 denotes the total present value of profits from extraction. The first order opti-
mum condition is;

- ' i ¢ E’ l
e—T(T—1) {[PT-I — Cp_y] + e "[Ep_(Pr |Prh1) — C7] EkQT } =0
fp_y

Hence, the following equation should hold;
[Pr—y — Cp—1] = [Ep—y(Pp |Pr_;) — Cp]le Q7
Assume that Cy(-) is identical in both periods, that fiy_, = @, and that Ep_,(Pp) =
a + bPp_ ;. Then it follows that;
Pry—C =(a+bPp_,—C)e"Qp
Assume further that Pp_, = E(Py |Pyp_y) for Pp_, = P,
Then we get the equality;
Py—C' = (Py— ) 7 ¢
Obviously,
Qe

at this point. (The marginal relative growth is equal to the rate of interest in the capital
market.)
Let us determine @,p and @yp at time (T — 1)!

— a—HT—1
Dyp = e~

@'PP = fe—r(T-1)
Assumption 3 hence implies that b < 1.
Observation: In some cases Assumption 3 implies that the price process is not a
martingale or a submartingale but perhaps a stationary first order autoregressive

process. _
From Assumption 3 it follows that the present optimal extraction level is a strictly

. 3 ; oh
increasing function of the present price. Note that, at least in the 2 period case, ;—-1;- =)
) t
under the assumption of martingale prices!
0 —1 0
=1 @y —Pyp
ey —1 0 —Dyp
=4 : 2.3.13
7P, D] S
— - - 2.3.14)
¢P, |D | ( )

Once more, we make use of Assumption 3. We conclude that the optimal amount of
the resource that should be saved for future purposes is a decreasing function of the
present price. The price process assumptions are however critical to the results.
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Table 1. Derivatives with respect to P,

onr oh¥ ' awr
eP, ' aP, éP,
Value v =0 =0 <0
Critical
assumptions 1,2 1,3 1,3

Let us investigate how changes in Q, affect RY, ¥Fand i¥! Fro;n-(ﬂ.&s) we get (2.3.15.)

—1 —1 —1

0 "'ﬁhh 0
G | 00 Dy, )
r _ 2.3.1
20, D] i548)

G — By Doy ‘

= (2.3.16
70, D] S

From Assumption 1 it is clear that 2* is a strictly decreasing function of the resource
quantity Q,. :

0 —1 —1
—1 0 0
= 2.3.17
70, D | | (2.3.17)
akr __¢?l!l N
— = 2.3.18
7, = 71D 10
0 —1 —1
—1 '®," 0 ,
&r* =1 o0 o
— . .9.19
20, :DI (2.3.19)
'397,* —D,, ' -
&Q, ~ D L

Obviously, both k¥ and ¥} are st-riétly increasing functions of the available resource
stock. The results are summarized in table 2.

Table 2. Derivatives with respect to @,

Ay on¥ 2
eQ, a0, Q,
YValue <0 >0 . =0

Critical
assumptions 1 1 5
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2.4. The expected marginal present value of the resource stock saved
Jfor the future under increasing risk in the process inerements

WPy, ¥y y)
2
risk in the price and growth processes between period t — 1 and ¢. Increasing risk thus

occurs in ef , and £2 ;.

WP, 4, lipr-—l) = lrJr max qbt[k:: | ¥ P, @)
b4 F{P |P! JdP, G'(Q, |V, ) dQ,

If it can be shown that the expected marginal present value of the resource saved for
future purposes increases (is unchanged) (decreases) as the risk in &, and/or &2 ,
increases, then it can be proved that the optimal extraction level in period t — 1 decrea-
ses (is unchanged) (increases).

In some cases, the risk effect on the expected marginal value of the “saved” resource
affects earlier time periods. This problem will be discussed in some detail in the following
sections.

Equation (2.4.1) is identical to (2.4.2) when G’(-) denotes the probability density
function of 53 i-

WP P )=f[ max & (hy, V5 P [E-1(QU,-1)) + e1))

In this section, the aim is to investigate how 1s affected by increasing

(2.4.1)

TPy | Pry) APGTEE ) de® (24.2)
The expected marginal present xa]ue of the saved resource at time ¢ — 1 is given in
(2.4.3).
W (P, | -
t E.;p:_l i ff mm.l(h,, ¥, P, [E_ (Q(¥,_)) + €3_1]) (2.4.3)
; 1e@ €, (@)
X F'(P|P,_)dP,G EET—UdET—l] _éi!!*":_—I
Remark 4. 1f we assume that GE—;’,@ > 0, which is a very weak growth condition, it
| ]
W1, Po.i) . ’ : y "
is clear from (2.4.3) that 2 (ﬂ‘ - 1) is an increasing function of E,_,(F).
- t—1

W)
¥,
e , can be extracted from the changes in E,_,(AF). In order to determine if E— (A7)
increases or decreases from risk increases in the parameters, we must investigate if
A¥ is strictly convex, linear or strictly concave in the parameters!

First, we investigate the second order derivative of A¥ with respect to P,. From (2.3.10)
we get (2.4.4).

A D pPyy + PuyPup

From Remark 4 we notice that the change in from increasing risk in &, and

—L = 2.4.4)
E?P‘ @gﬂp + qihh ( -
Denote the total derivative of (2.4.4) with respect to P, as in (2.4.5);
) gr o
epP,] & e2AF  ohY Air  ovr (2.4.5)

§P, &P? ' gPoh, &P, ' oP&¥, &P,

ke 1
éPt — l@w T &,,)°
X [@Pyy + Pl — [PrpPuse + DiuDep] [Pywp + Prpl} (2.4.6)

} 1PwppPyy + PupPuwr + LosrPuwp + LuPyrr]

4
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Assumption 4.
[Py(-) = ™" [Pk, — Cy(ky)] + WPy, ¥)})] = Prpp = 0, Dpyp = 0
Remark 5. From (2.4.6) and Assumption 4 we get;

G2A¥
b;?;; = {x} Py {Pupp[ Py + Dy] + Dpyp|DPyp — Pypl}
]
> 0= < 0 =0
1
where ) = | )

) ; 2N
Obviously, the sign of HD{; depends on Dypp and @yyp.

2
epP, ok,

1
{(@ + Dy, )2] {PurPww + Ppp@yy, + By Pup + Py Pppy]

X ["D A + Q#h] - ['@J'JP@'F-'P + Q}hh@?’f’] [Q'.'F'P'J‘I _'_ Q.‘di.'r]} (247}
Remark 6. (Assumption 4) —
Dip =0, Pyyy, — 0, Pyp, = 0, Py, = 0

From Remark 6 it is clear that (2.4.7) reduces to (2.4.8).

&2 _ DDy Pyp — Dy p]

er, ek (Pyy + P2 s)
. —_p : eqy .
Remark 7. From (2.4.8) it is clear that sgn (E:‘P 7 ) = sgn (Dy,;,;) since Dyy < 0
¢ Ohy
(by Assumption 1) and [@Pyp — @,p] < 0 (by Assumption 3). See also Remark 3!
bt o ' 1

&P, v, = T e .;pm}z} {[qj-‘rf@m!ﬂ'ﬂ + D)pPyyey + D Pyp + PP gyp]

X [Pyy + Py ] — [Pp@Pyy + Dy Puyp) [Py + Duell  (2.4.9)
Remark 8. (Assumption 4) —
¢ﬁPw =10, g’m.-w =0

From Remark 8 it is clear that (2.4.9) reduces to (2.4.10)

iz { Dy
&P, ¢y, (Pypy + Dyy)?
=0 <0

<0 (2.4.10)

} [Prwy(Dip — Pyp) + Dyyp(@ypy + D))
il Nt Py T Fanll

e ek

Remark 9. From (2.4.10) it is clear that sgn (E_ﬁdzc_?!) depends on @Dyyy and Dyyp
Gl | I

31'_11-:';3 @hh ‘:: U, (¢'|plp + ﬁﬂﬂ') < 0 b}’ ABBumPtion 1 and (@hp i @app} i3 0 b}'
Assumption 3. Se also Remark 3!
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rit*
§ (2o

Now the time has come to write ;P* explicitly! By using Remark 5, (2.4.8), (2.4.10),
t

(2.3.12) and (2.3.14), we can express (2.4.5) as (2.4.11):
(Eﬂi_;"
a77)
o}
s (57

oT) _ [@wppaﬁ,.,-,{@w + D] + Py Pa[Byp — qup]]
§ Pt (@'}"‘F + djk.'ijz

( Ear ) (Ehf)
&P, k, &P,

L9

[] d}fr!.!e@';"?{{b'ﬂf‘ _ ¢f“P] (gpff’P - 1'1') L
+ : A : 2.4.11)
[ ( Py + D)2 (Pyyw + D) ( /
i s
(72)
+ [d}?w‘!’@kh[@fap s Qa'PP] —i" Q'ﬂ'r'-‘f’@.-‘n'i[qj?‘?" - d}:'h':]]
(q)‘n'”!" + (p.hh]z
b
(77
- [{‘I’ﬁp — Dyp)
S DPyw + D)
(2.4.11) can be simplified to (2.4.12):
-
eP,] = 91D Puwy + Ppyyp Dy,
§ P, <0 <0 <0
-+ 02| Pupp(Pry + Piy) + Poyp(Dyp — Pyp) (2.4.12)
— ! L P )
<_U <8 >0
1
1+ gt
( * (P + D)
<0
where 9, and D, are defined in (2.4.13).
(@'FP i ¢1IP:|2
—_ 0
o (Pyy + Pp)® = _
¢Jﬁfr (2413)
- 0
. (Pyy + @M)a =

§ (ﬂ
Remark 10. From (2.4.12) and (2.4.13) it is clear that sgn :

¥z can be unambi-
a -

guously determined in some cases and depends on @, Puyy, Dypp, Pyyp.
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Result 1
sgn(f,) has been determined in the proceeding analysis.
_§ (f_-?-_gt) o str. convex
epP — . A1 ;
B, = : 0 — A¥* i ) 106AT in P;.
§ P T ' str. concave

Now the time has come to investigate the second order derivative of A¥ with respect
to @,! From (2.3.16) we get (2.4.14);
of _ Dubyy

— : 2414
0Q  Pyy + Py ( )
Denote the total derivative of (2.4.14) with respect to @, as in (2.4.15);
&
“\eQ,/ & ?aF  eh} air Py (2.4.15)

§Q  eQF T 0Quoh 8Q, ' 2Q ¥, o0,

gr2’1“*={ ) (BeBow + BBl
L;:QIE (Qf’?w‘f‘@;.h]zj hhQ = ey REFEEQ (24,16)

[Pyw + Prp] — [PisPov] [Pywg + Pugl}
A e (D) *P g + (Pyy)® P
oQr (D + Dya)?

Remark 11. From Assumption 4 it follows that @yyug = @, = 0. If, on the other
hand, the cost of extraction is dependent on the resource stock, @yyq and @y,
may be different from zero.

Note that @yyg and @, may be zero even if the cost of extraction is dependent

on the resource stock!
Finally we conclude that §22F/éQ; = 0.

i ( . ) (PP + Py D
70, th,  \ @y + Bpp) \CruLer T Culrm) (2.4.18)
(Pyw + D) — (PuPyw) Py, + Ppas))

Remark 12. From Assumption 4 follows that @,,, = 0. Hence, (2.4.18) is equal
to (2.4.19)

(2.4.17)

et - Dy J

eQ, ch, (¢g,,, e qu) Phan (2.4.19)
2 1 \

Q. &%, ((@w + Q—'*m)*) (@uePre + P1uPrrr) (2.4.20)

(Pyw + Dyy)) — (P @) (Pywy + D)

Remark 13. From Assumption 4 follows that @,,, = 0. Hence, (2.4.20) is equal
to (2.4.21).

i b D, 2
= ) 421
70,67, (T ) v .
Finally, there is a possibility to express
f G4,
15
cQ, G,k
explicitly!
5§, P i

10 Syst. Anal. 5 (1958) 2
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(2.4.22) follows from (2.4.16), (Remark 11), (2.4.19), (2.4.21), (2.3.17) and (2.3.19).

§ (ﬂ) :
aQ, _ ( Dy )2 b ( Dy ) (' Dy \?
§ Q, Ppy + Dy, M\ Dy + By, Dy + ¢hk)
@ (2.4.22)
o ( hh )
e Dyy + Dy, y
(2.4.22) can be simplified as (2.4.23).

(&)

{;‘3‘ - (qgw ; @M)a) (D) Py + (Dy)® Dypyp) (2.4.23)
Remark 14. From (2.4.23) it is clear that
3 oAF
{sgn(Dy1;) = sgn(Pyyy) = &} § (ETQ_,) [
{san(D,1;) = x Pyyy = 0} — sgn S Q; J -
(D, =0 sgn(@yyy) = a}
Result 2
sgn (f,) has been determined in the proceeding analysis.
ard
3 (%) !} .. str. convex |
ﬁﬂ:w = 10 = 4% is inear in Q,
| < str. concave

Let us reconsider the problem of this section. We wanted to know if the expected margi-
nal present value of the resource saved for the future will increase or decrease under the
influence of increasing risk in the process increments. (Recall also Remark 1.)

Now we know that under some assumptions it is possible to determine if A¥ is strictly
convex, linear or strictly concave in P and @Q,. The present question is if increasing risk
in &, and/or e? | (which implies increasing risk in P, and @,) will increase or decrease
the expected value of AF (=E,_(4¥)).

Approximate the continuous distributions F(.) and G(.) by discrete distributions with
n prices and quantities. The probabilities of price P; and quantity Q; are denoted by
F(P;) and G(Q,) respectively. Again, notation is simplified.

2 F(P)=1 (2.4.24)

? G(Q)=1 | (2.4.25)
The expected marginal value of the resource in period ¢ is;

By (AY) = E 2 P, Q) F(P) G(Q) (2.4.26)
A RoTscHILD/STIGLITZ {;] mean preserving spread (MPS) in the variable z is defined
according to (2.4.27).

dX, = 0for (4 |4 +«, 4 & f)
— Prob (X,) dX, = Prob (X,) dX, = k, > 0

(2.4.27)
X <X,
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I.et us use the definition

1 (2.4.27) in the analysis of increasing risk in price and quan-

tity! kp and £y denote increasing risk in P, and Q,.

OB (&) _ v [0 (Pa, Q) 550, P, | 9AX Py Q) =,y . 8P 5
—_—— = | —— F(P = i boiod] 4 i

c'i‘ﬁ:;. j oP ( “) @kp + EP F(Pﬂ) afﬂp_' G(Q]}

(2.4.28)
GE_(AF) _ [ AP, Q) | 8 (Ps Q)] 5 L
by symmetry, it is clear that;

EE,_]{-}.?) s 5‘ 8;*.?[Pv Qm" EA?(PQ Qﬁ) n

kg ¥ [ 7Q 70 ] F(P) (2.4.30)

Remark 15.
str. convex

AF 9 linear

str. conecave ]

Result 3.
EW((Py_y, ¥)_4)
ov¥,_,

EE,I(A;*){: '

1 nxr, —
' ck,

is an increasing function of E, ,(i¥). The effect of increasing risk in

&l and e ; on E,_(4F) has been analysed. In some cases, the sign of the change in

_E,_(A}) is unambiguous.
increases in &¥_,.

In table 3 the results are summarized with respeet to risk

Table 3. Changes in E,_(4f) when the risk in ¥ | increases (see remark 14). A similar
table can be constructed for increasing risk in £/ . Then, however, @ypp and P up
must also be taken into consideration (see remark 10)

when - the

aW s
Sign of change in Ea—l(i?‘) il u”;({ﬂ_r W, )

. . Py
Doji Dy risk in e¥ | increases
E =0 =0 =
=0 =0 >
=0 <0 ::0?
<
=0 >0 >0
= =0 =)
=0 =<0 <0
<0 =1 30?
L
<0 =0 <0
<0 <0 <0

10*
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2.5. Implications of increasing risk in the process increments in the future
for the optimal present extraction level

Let us do some comparative static analysis in period {. We want to know in what
direction k¥ and A} will change when the risk increases in ” and/or e?. Let & denote
risk in ¢’ and/or Q.

di* ] [o
(D]| dr* |=]o0 (2.5.1)
_d!pt* _‘plpé d.f
0 -1 -1
0 D, 0
85-? — _@'F-.t 0 @'lp‘q: (2.52)
& |D|
8‘1? 5 _gbﬁr.-‘.'@#’f g F
85 = |D| ) {4-11.3)
_ jan}
Remark 16. (23)3) — [Sgn (E_S) = sgn {@lps}}

~

. s e : i Ay
Through induction, it is easily verified that sgn (G {;&_") =sgn (D, )n =0
Hence, the following induction argument should hold ;

1. The expected marginal present value of the resource saved in period t is @,. The risk
in & and/or £9 increases.

2. We know the signs of @,,, and @yy,. In table 3 it is possible to determine if
@, increases or decreases (at least in the case of increasing risk in e¥).

3. In remark 16 we observe that A} increases (is unchanged) (decreases) if @, increases
(is unchanged) (decreases).

P, ¢E,_ (@)
== E _ j_* —
3&0{_1 t 1( r) EJ'P'; i
t . 5Et—‘l(Q{.-} =1 » ;
Hence, if we assume that ————=— > 0, (see remark 4) increases (is unchan-
2 v,

ged) (decreases).

. ! . 6D, .
4. From above, it is clear that an increase (no change) (decrease) in —' implies an

¥,
increase (no change) (decrease) in ——= n > 0.
th-—n
Result 4.
An increase (no change) (a decrease) in {% implies an increase (no change) (a de-
t
crease) in 2?;_“, n > 0. The assumption that @,, < 0 is critical to the result.
i—n ’
0 0 -1
—1 0 0
ehf. | —1—@y. Dy,
= J :, : 2.5.4
- ZE D] (2:5.4)
pk
S Dyt (2.5.5)

& |D]

L FIY L
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Result 5.

*

h
sgn (—a—é-) = —sgn (Dy;)

Hence, from result 4, we observe that the present extraction level k¥ should increase
(be unchanged) (decrease) if the risk in &}, (¢f,) increases and A%, is strictly con-
cave (linear) (strictly convex) in P, (@,,,). The sign of the second order derivatives
of 4f, , with respect to @,., can be determined in some cases from the signs of
Dy, and Pyyy in period t + n. The sign of the second order derivative of i¥ .,
with respect to Py, depends on @,;,, Puypy, Pypp and Pyyp (see table 3).

2.6. Can the signs of @, and P gy be unambiguously determined ?

As we recall from table 3, the signs of @,,, and @,,y must be known in period
t + 1 if we are interested to know in what direction the optimal harvest level changes
in period ¢ — n, n > 0 when the risk increases in ¢ and/or &?.

In this section we will investigate some cases when the signs of @,,, and Dy,
can be unambiguously determined in all time periods.

In period t, we expect the present value of future profits to be equal to W,.,(.)

Wi (P, ¥) = ffm&x Dipils Priyy Qeay) PPy ¢ le) dP, .,
G'{le Il‘p!) dQ!+1

(2.6.1) can be replaced by (2.6.2). Some notational simplification will be undertaken.

W (P P =[] D*(,.[E(Q,+1(¥F))) + £8]) F'(Pyy |P) AP,

(2.6.1)

(2.6.2)

G’ (ef) def?
Wil) _ rf raver i

v, [[@Q) .. (2.6.3)
BWeirl) _ ((rmmimmng 1 oo N
3—?‘2'—.[_’.(@ @2+ 2'Q) ... (2.6.4)
Ut - [f @@ + 30°QQ" + Q") ... (2.6.5)

t

It should be clear from (2.6.5) that if the expected growth is a linear function of the
saved resource quantity (=@ > 0, Q" = 0, Q""" = 0), then (2.6.6) holds.

EBFVF_._l 8‘3 t*_l Eﬁs.j"‘ri
_ 1) + (2.6.6

o () = wr) = (i) s
(2.6.6) will hold also if growth is assumed to be a concave function where the third order
derivative is nonnegative (@' > 0, Q" = 0, Q" = 0) and @' > 0.

Remark 17. In general, the sign of ég![;_:l is dependent on the signs and absolute
f
edF. , BDf., PDF ., OE(Q.,) EELQ. ) EE Q. ()
e Rt i t41 OBlvtys) O EdSisg (&1
TN O ey B, GOR. 0%, owr "My

The sign can be determined through (2.6.5).
Now, the method of induction will be used to show that the signs of @,,, and @y

. can be determined in all time periods if some conditions are satisfied.



146 Syst. Anal. Model. Simul. 5 (1988) 2
Stage Assumption : Result Remark
a, Pp(nQ@p) = Vo(Prp, Q) since no quantity
can be saved until
T+1
b san FWp\ . bl Depends on the
' ’ o ] aQh growth funetion

and &(.) see (2.6.5)
and remark 17

BV p_ #DR ' the
- ( 7 1)  § n( T) Follows from the

&h3_ 4 8Q3. assumption that
sgn (Vip) = «; for all
tand &p = Vp

d sgn (EP2=1) _ oo (EP1\  Follows from b,,
1 03, )~ 9"\%h ) o423
PWa_, Bdh_
R

@T’}—a UQ;_ 1 1

3 3% .

Gy sgn (é3 F;T" 2) = sgn (3 d:T_]) since @, = Vo

Ohp— 2 \ 8@ and from d,

| &0 #d%\  Follows from b
d. sgn (__L_z.) s ( T) : 25
: 007 o)~ "2 ) e 2428
BWao_, a3 *
bi* sgn( - ‘)—s n( Tl) asin b
' agpg"—l—i 393+1_1 1
Pl 5oy sk . _ _
Ciry SgN (—3?—1—-3‘) = sgn ( 3T 1) gince @ = V, and

R 1~ ;i _ from d;

di sgn (@'_"L—_‘) = sgn (qub;) Follows from b;  ,,
N Q71— 2Q% | c;yq. (2.4.23)

Remark 18. If the assumptions a,, b;, ¢; are valid for all 7, then the signs of @,,,.
and @ gy can be unambiguously determined in all time periods.

2.7. An example

In order to illustrate the use of the results in sections 2.1-2.6, we consider the following

situation. The profit from extraction is defined in (2.7.1), the growth process in (2.7.2)
and the price process in (2.7.3)

0 < at) < 1_)

i-’r"fpu k.r} = P[k: — k“} ';'Ip“_““))a (0 < klt) {271)

Qrir = olt) + AO) In (B) + &8 (0 < f(t) (2.7.2)
- P 0<b(t) < 1 -

P,., = a(t) + b(t) P, + eI, (0 o ) (2.7.3)
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From (2.7.1), (2.7.2) and (2.7.3), we extract the following derivatives and signs;

@, > 0 (Assumption) Q< 0
Dy, < 0 Q" >0
s 8P, :
¥ E’!QI'PI) 4
= —=1>=10 0P <1
o (- =

The analysis is made in the following order:

1. Through induction we can verify that @, > 0 and @gypp > 0 in all time periods
(see section 2.6).

2. E,_,(A¥) is strictly convex in &f for all ¢ such that ¢t < T (see (2.4.12), (2.4.23),
remark 10 and remark 14).

;-L k.,
’r-r E""r.;
rd
-4
A;-r /

(- 1
F

* x
",.T-}‘ Frqy—

— a2
71 -

Fig. 5.1. Increasing risk in the price in the last period (T') does not affect L A

The reason is that the expected marginal value of the resource Ep _ 1(A%) is independent of

eVop_
the price risk (Nute: The left ordinate must be ——— and the right ordinate must be

oW g ) thy -y
e¥p_y
]
ar., an
84y, ¥'eo LAt oy,
il w0 2
-4
AZ e
0
a7 \
A
o Qry ;

Fig. 5.2a. Increasing risk in the price in period 7' — 1 will generally affect Ep_o(AF _1)-
In the figure, price is assumed to be independent over time, V' < 0, W < 0. Then,
Eq_(A%_4) decreases as the price risk in period 7' — 1 increases. (See (2.4.12) and fi-
gure 5.2b!) (Note: y = ')
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_3 2 i
s ] 07y ;
- -
437 , <0 o
s
Vs
Z

A0
. ’ ahs ,>0 '
F - i}

Fig. 5.2b. In figure 5.2.a. we obtained a decrease in Ep_,(AY._ ). This, in turn, implies

. oW o
a decrease in T—1, which is illustrated above. Hence, iz _ o will decrease and A} _,

- . : . éWrp_y
will increase. | Note: The right ordinate must be ————
e¥p_s
av, l
-1 an
ah
r-r - 877
v ’”-a,;ﬂcﬂ’u!‘ -7
kY]
Al \
A? -
A? -
: @r.y 5

Fig. 5.3a. Exactly as figure 5.2a. except for that ¥ > 0, W > 0. Here, Ep_,(A%_,)
increases as the price risk in period T' — 1 increases (see (2.4.12) and figure 5.3b!) (Note:
v =)

7

-4 aw

_r TiF
s r.2

4A% >0
R B
} .df.’:._ z"ﬂ
it Baana cnee
Fig. 5.3h. I? figure 5.3a. we obtained an increase in Eq_o(Ap_,). This, in turn, implies

W
an increase in — T—1, which is illustrated above, Hence, A%_, will increase and N5
Fp—g
will decrease. (Note: y = ¥)

e
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¥ P aw
73 (#h,-8,] 20274 e
4 hp Frd Z d":l
| e
+4
a2 1-4
f \‘i
.I-Lﬂ
Ar /
*
h.,
= g —

Fig. 5.4. Let us assume that @, , = @ . A change in the price in period ¢ will then not
affect the optimal harvest level since the expected marginal profit from the saved resource
changes equally much. This, in turn, implies that E,_,(4f) is unaffected by increasing risk
in Pj, and A (n = 1) will not change. (See remark 3.) (Note: y = ¥)

|
nt _—h,<8,)

Fig. 5.5. Optimal present harvest level as a function of the present price. (See remark 3,
and figure 5.4.) (Note: y = W)

{
V=t Wr . Wy

.&)\',-__,!

/ I
-
Afr.y
{ £r-1 (""?'-;r*ar)——“—[
Fig. 5.6." Increasing risk in the linear growth process (eg__ 1) @r=c@p_y —hyp_;) +
ef_ is illustrated above. The risk increase implies that A% _, increases. Since Ep_o(i3_,)

decreases, h;_ n (v > 1) increases. A critical assumption is that V' < 0, W'’ < 0 (see
table 8.)
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3. Increasing risk in £ increases E, ,(1¥) for all values of P, , and Y, , (see re-
mark 15).
4. hf_, decreases and A}, increases for all n > 1 (see section 2.5).

Hence, in this case, increasing risk with unchanged expectation in the growth process *

during some future period #(t << T') implies that the present extraction level should
decrease. The other result is that the expected marginal present value of the resource
increases. Both effects are unambiguous.

If b(t) = O or it can be shown that @ypp and @yyp are close to zero, then increasing
risk in the inerements of the price process some time in the future (¢F) implies that the
present extraction level should decrease and that the expected marginal present value
of the resource increases.

3. Discussion

The problem under investigation is fairly general. Still, some rather strong results have
been obtained.

As can be seen in the example of section 2.7, the effect of increasing risk some time
in the future in the price and/or the growth process (e, éf such that t < (T — 1)) on
the optimal present extraction level is unambiguously negative. Note that the set of
unambiguously determined derivatives in (2.7.4) can be obtained from a large set or
assumptions concerning the stochastic processes and the cost function. Furthermore,
many other combinations of derivatives and signs give unambiguous results. One such
example is;

Vz = Ptkt - Cl(kt)
Quer = ¢(t) + Bit) ¥, + &? (0 < B (3.1)

0 << aft

Here, we assume density independent (but possibly time dependent) growth and a
stationary first order auto regressive price process (with possibly time dependent para-
meters).

The assumptions should be realistic in for instance the oil, coal and mineral sectors
(if price is stationary) since these resources generally have no growth at all. If we make
use of the methodology described in section 2.7, we will find that the present extraction
level should increase (be unchanged) (decrease) if the risk increases in the price and/or
the growth process some time in the future (&f, £ such that t < (7 — 1)) and the margi-
nal cost function is progressive (linear) (regressive).

(It is important to be aware of the dicussion in the end of section 2.7.)

The . question of how the stochastic component should enter the growth process
has been discussed by May, BEppINGTON, HARWOOD and SHEPHERD. The main question
is whether or not the risk (or uncertainty) is density dependent. They state that the
optimal harvesting decision is dependent on that. )

Obviously, this is true. Under the assumption of density dependent risk, the risk is
no longer exogenous to the enterprise. The risk can be affected through the harvest
level. However, they also write that there are arguments why it is likely for environ-
mental unpredictability to be associated predominantly with density independent,
rather than density dependent, population processes. (Also in the study by DoUBLEDAY
[3], the noise is independent of population size.)

-
AR ok 175 ~arrea g
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