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Pulse Extraction Under Risk and a Numerical Forestry
Application

P. LOHMANDER

The Swedish University of Agricultural Sciences, Umea

The presented study on discontinuous pulse extraction under specific assumptions about the stochas-
tic price and growth processes is based on the results achieved during the Author’s stay with the Sys-
tem and Decision Sciences YSSP Program, 1985. It was motivated by the forestry application descri-
bed in the paper. The general method can be useful in the modeling of optimal use of other natural
resources as well.

A. B. KURZHANSKI

Chairman

System and Decision Sciences Program
IIASA Laxenburg

The problem of optimal pulee harvesting of a resource under risk is discussed. The fundamental
Importance of stationarity in the stochastic process is investigated and the limiting optimal etopping
rule is derived. A numerical example from forestry is used to discuss the expected present value and
the optimal stopping criterion as functions of time.

Finally, the probability distribution of different optimal harvesting ages is calculated.

In 1987, a publication will appear closely related to this one. It will contain a purely analytical
derivation of the numerical results presented in this paper. Furthermore, it will contain a more
general numerical optimization model, where any first order autoregressive price process and any
price-age relationship can be used. Hence, this paper is a “popular” version of the final paper. Pre-
liminary results show that the qualitative results discussed in this paper hold in very general cases.

1. Introduetion

1.1. General Introduction

Future prices and future growth are generally not known with certainty. The question
under consideration is whether or not this fact has any implications for the optimal re-
source management.

It is assumed that pulse extraction (harvest) of the resource is optimal. This means
that extraction does not take place continuously (which is often the case in for instance
oil extraction) but discontinuously (compare LonManpERr [19]). Maybe the most typical
case of pulse extraction can be found in forestry. In the first production stage, the forest
1s planted. Then, in some cases, thinning is undertaken. Finally, maybe one hundred
vears later, the clear cutting takes place.
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The optimal rotation problem was originally studied under the assumptions of a
constant price and a deterministic growth function by FAUSTMANN [8]. A modern treat-
ment of the Faustmann problem can be found in JoHaNssoN and LOFGREN [13] where
many comparative static results are derived.

The effects of the introduction of risk on the optimal management (investment and
extraction) have the unpleasant property that they depend on different things.

First of all, the question is where the risk occurs. Risk in the growth process may have
other implications for the optimal behaviour than risk in the price process.

The second question is when the risk occurs. Since the management of resources is an
intertemporal problem, this is important to know.

Thirdly, it is important to have some knowledge of the stochastic properties of the |
process where the risk is present. As will be proved, the consequences of risk are quite
different under stationary and nonstationary (for instance Martingale) processes.

1.2. Tools

The original work on dynamic programming was made by BrerLrmax [2]. The main

part of the analytical tools can be found in the publications by FLemixG and RICHEL

[9] and MarLIARIS and Brock [21]. |
The concept “risk” has been defined according to ROTSCHILD and StieLrrz [26] and

Saxpao [30]. An introduction to the different risk concepts and their analytical treat-

ment is given by HEy [11].

1.3. Optimal Stopping in Resource Economics

NorsTRoM [23] treats growth as a deterministic process but allows the timber price to
be stochastic. He proposes that ; - The expected present value in the stochastic model is
at least as great as the present value in the corresponding deterministic model.

Norstrom treats price as a stationary Markov process. The proposition is easy to
believe since you have the option to wait for a price that is better than the expected
price when the price is stochastic. (Of course the expected price in the stochastic model
is equal to the price in the deterministic model.) The stationarity assumption is, however,
crucial.

RivsaxD [25] has defined a stochastic dynamic programming model for the cutting
decision in forestry. The model is used numerically to study how some variables are
affected by changes in parameters such as the rate of interest and the development of
prices. The variables under investigation are the harvest decision criterion and the pro-
bability of cutting.

Risvand makes the same general assumptions as Norstrom; Growth is deterministic
and price stochastic. He calculates the expected present value and reservation prices
in the forest under the assumption that prices are distributed according to a Markov
chain estimated from Norwegian data.

Ko [14] calculates the optimal stocking level under growth uncertainty numerically
and claims that ; — The effects of various degrees of indeterminateness, or risk in growth g
prediction, are that for larger variance of growth prediction, optimal regimes involve
shorter rotation, lower stocking levels and lower mean annual increment. Kao uses the
maximum mean annual increment criterion (which is generally not consistent with
the expected present value criterion) and dynamic programming.
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Brock, RorscuHiLp and Stieritz [4] (BRS) assume that the value of the stand follows
a discrete time Markov process of the kind (1.3.1)

X=X +e,E@Ee)=n (1.3.1)

where £, are independent, identically distributed increments with expectation u. They
claim that the optimal strategy is a barrier strategy under their assumptions. There is a
critical size # such that the tree should be harvested the first time it reaches #. BRS
show that the critical size is the same under risk and certainty if P(, > 0) = 1. LoFGREN
and RANNEBY [20] show that the critical size is the same under risk and certainty for
P(e, = 0) < 1. MiLLER and VoLTAIRE [22] extend the analysis a bit further of the same
basic model (1.3.1) through some comparative dynamies.
However, let us consider the process (1.3.2).

X1 =Xp11(Xy) + &, E(g) = 0 (1.3.2)
The first order autoregressive process given in (1.3.3) is a special case of (1.3.2).
X£+l =a + bX‘ + Epy E(S;) =20 (1.3.3]

Obviously, if we restrict (1.3.3) further and assume that b = 1, we get (1.3.1).
(1.3.1) is a nonstationary process. If, on the other hand, @ > 0, 0 < b < 1, then we
have a stationary process. A special case of a stationary process is (1.3.4) if a, = a =

constant over time. \

X! =y _]" -7 E(S{] =10 ) (1.3.4)

In order to show that the results obtained through the analysis of the nonstationary
process (1.3.1) do not generally hold for stationary processes, the simpliest possible
stationary problem will be discussed below.

Assume that the expected present value of the profit should be maximized and that
price is a constant (=1) and the rate of interest is zero. The quantity of the resource is
(1.3.4). The probability density function of X, is F}(X,)

F(X)>0 forX,>0 (1.8.5)
When X, is known, the expected present value is @,(X,).
Q;':X:} = max [X!} Wz_},l] (1.3.6)
W, is the expected present value if harvest does not take place at ¢.
W= [ ®(X,) F/(X)) dX, (1.3.7)
é

Assume that X} exists such that
[X; > X¥] = [X, > Wi 4]
[X; = XF] = [X; = Wiyl (1.8.8)
[X; < X¥F] = [X; < Wyi4]

then (1.3.7) implies (1.3.9).

Xy o)

Wy= [ Wy F(X)dX, + [ X F|(X,)dX, (1.3.9)
o X:

X is called the optimal reservation value and maximizes W,;
ow, .
31: = (Wi — X)) F/(X}) =0 (1.3.10)
t
=0 >0

23 Byst. Anal. b (1988) 4
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The second order maximum condition is obviously satisfied;

AW, :
E_X_*': = —F/(X¥ <0 (1.3.11)
t
Let us calculate another derivative!
W, ;
Wé"t: =F/(XH >0 (1.3.12)
Differentiation of (1.3.10) gives (1.3.13)
BN o AW % _
EX?:: d‘l? + &-X?: 3HE"H,1 dHH-I =0 (1.3.13}
AW,
exy exy oW, 4
W = 2, >0 (1.3.14)
oxX¥ -

Obviously, the reservation value in period  is strictly increasing in W, ;! Denote total
derivatives by § signs.

& ) g
W T e A @31
Obviously we get; =
g%r% = F(X#) >0 (1.3.16)
And from induction;
§$:,E“ >0 (n>0) (1.3.17)

Hence it is clear that the expected optimal present value (in this case identical to expec-
ted harvest volume) in period ¢ is dependent on all future periods.
Assume for simplicity a two period world. If W, would be 0, then W, is givenin (1.3.18)

W, = of X, F{(X,) dX, = E(X,) (1.3.18)

From (1.3.17) and (1.3.18) it is clear that ;
[Wy> 0] - [W; > E(X,)] (1.3.19)
Assume that E(X,) > E(X,), which means that X, is the optimal harvest volume
under certainty. Then, we have shown that the expected optimal harvest volume under

risk is strictly larger than under certainty under some assumptions including stationa-
rity.

1.4, Stochastic Properties of Prices

Obviously, different authors make different assumptions concerning the stationarity
properies of the processes.

However, since the effects of increasing risk may be different under different assump-
tions, we must consider the problem through theoretical and empirical analysis. Quali-
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tative results based on the use of reservation price models may be irrelevant if the Mar-
tingale assumption (or (1.3.1)) is in reality a good approximation of price movements.

On the other hand, some qualitative results for the optimal management of natural
resources are extracted from models that are based on the assumption of Martingale
prices (or {1.3.1.)). If it can be demonstrated that prices are in reality unlikely to be
Martingales, (or (1.3.1.)), then the relevance of these results should be questioned.

A Martingale is a stochastic process Py where E(P, ;) = P;. This can be described
through equation (1.4.1.).

Ppy=P +u (1.4.1)
u, is a stochastic variable with expectation zero. It is obvious from (1.4.1.) that P, , =
(P + W) + s
(Prox — B) =%
(Prrg — Pry1) = g
If we assume that the stochastic variable u, is not serially correlated (u;y; is not
correlated with u,) then the price differences (P o — Pi+q) and (P,., — P;) are
also uncorrelated. =
A first order autoregressive process is described in (1.4.3).

PE_:_1=(3—:_EP!+“: (1.43)

It is obvious that (1.4.1) is a special case of (1.4.3). If (1.4.3) is a stationary series
then @ > 0 and b < 1. The expected price in steady state is g = a/(1 — b). Let us
investigate the differences of (1.4.3)

P, =a+bla+bP + w)+ w.,
(PE+2 _P!+l)=ba‘ _i_btb'—' l)P;"-ib_ 1) u;‘f‘ﬂq,l (14.4)
(Pz+1_P:]=a'+{b*1]Pt+“:

(1.4.2)

Assume that P, = u. Since g = a/(1 — b) it follows from (1.4.4.) that E(P,.; — P) =
E(P,., — P;.;) = 0. Furthermore, (P, — P,.,) is negatively correlated with
(Pysy — Py) since (Pyio — Priy) contains the term (b — 1) u, and b < 1 by assump-
tion.

The intuitive interpretation of this is that the expected price change after a positive
change from equilibrium is negative. Hence, the equilibrium is ‘“‘stable” (stationary).

SAMUELSON [28] shows that price differences are uncorrelated over time (the Martin-
gale property). He writes — “This means that there is no way of making an expected
profit by extrapolating past changes in the futures price, by chart or any other esoleric
devices of magic or mathematics™.

In 1971, SamuELsoxN [29] introduces a model for stochastic speculative prices. He
now assumes that harvest in a natural resource is stochastic in every time period (for
instance weat) and that an optimal inventory is held. Assume that growth is extremely
high a certain year. It is then optimal to distribute this extra quantity between the
harvest year and future years (inventory). Thus, if the demand equation is downward
sloping, the price decreases during the high growth year and the following years (during
which the inventory is consumed). Hence price is serially correlated. The series is statio-
nary thanks to the assumption that harvest quantity in each time period is stochastic
and independent of other periods. (The expected harvest is constant over time.)

Note that the stationarity in this model depends on the assumption of a stationary
demand equation, a stationary growth equation and stationary harvesting costs. If
one of these factors would not be stationary, then there would be no reason to believe
that the weat price is stationary.

23*



344 Syst. Anal. Model. Simul. 5 (1988) 4

ArcHIAN [1] discusses the same problem as SAMUELSON [28]. From the literature
survey above it is clear that no theoretical answer can be given in the general case to
the question whether prices are Martingales or stationary processes.

The roundwood market in Sweden has been analysed by BRANNLUND, JOHANSSON
and LOFGREN [6] and by BRANNLUND [5]. They have described the roundwood market
as an equilibrium and a disequilibrium. However, they demonstrate that the disequili-
brium model does not give a significantly better explanation of the market behaviour
than the equilibrium model. KUULUVAINEN [15] has made a similar econometric model
for Finnish conditions. Kuuluvainen also includes optimal raw material stock as an
explanatory variable in the demand equation. SoLBERG [31] introduces ARIMA and
transfer function models in the analysis of sawn wood prices. This is not a roundwood
market model but included here since the area is related. Note however, that the round-
wood market models do not give any qualitative information about the stochastic
properties of the roundwood price. They are possible to use only if the parameters of
the demand and supply equations are known in advance.

How is the future affected by the present according to the different assumptions
concerning the parameters in (1.4.3.) ?

0Py i
8P, ? (1.4.5)

OGPy s :

BB bz Pl
2P, (1.4.6)

epP,,

B 1.4.7
ep, ( )
Let us investigate the value of (1.4.7) for different assumptions about b!

b=0 | 0<b<1 | b=1

Py 0 ' lim 6P in " P n : (1.4.8)
er, nseo 8P, P,

Hence we can make the following conclusions:

- If the price is a Martingale, then a price increase today means that we should expect
the future prices to increase equally much. Thus it is not clear that we should increase
harvest today. Maybe it is equally good to wait longer ?

— If the price is stationary, then a price increase today generally implies changes in the
expected prices in future periods. However, as the length of the time interval approa-
ches infinity, the influence of today’s price on the expected price in the future ap-
proaches zero. The prices are practically independent over time when the periods are
long. This is the assumption made in section 2.

2. A Numerieal Forestry Application

The general stochastic pulse harvesting problem under risk in the growth and the price
processes has been analysed by LoaManpEr [18].

He found that the qualitative effects of increasing risk depended on the choice of
risk definition and the number of stochastic processes in the problem. An updated
version of the analytical paper will appear in 1987.

In this section we will investigate the phenomenon of stochastic prices and the effects
on optimal harvesting. This is likely to be the most significant stochastic problem in
forestry with respect to profitability.
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Of course growth is also stochastic. However, the net prices may vary 100% over a
few years and the price observations are almost costless. The standing volume in the
forest stand varies only slowly and is generally much easier to predict. Furthermore,
the growth is not directly observable and growth information is not costless. To get
reliable estimates, a large set of measurements must be made in the particular forest.

; The stochastic properties of wood prices in the future are of course not known. Let

i us take a look at the past developments of wood prices in Norway and Finland!

: In Figures 1 and 2, the round wood prices are given in the two Nordic countries.
According to a time series analysis in LOHMANDER [18], they can be described as
slationary autoregressive processes. Hence, as the reader can find in the figures, the
correlation between the prices in “neighbour time periods” decreases as the time interval
between periods increases.

F

200

158

gLy ] wd @ e

T 0BS

T I R I T
960, 1 651 01 .1 a7

Fig. 1. FINLAND, Real stumpage price (deflated by whole sale price index, 19772 =
100) Finnish mark/M?. {Source: KUULUVAINEN [15], LorMAaNDER [18])

- ™

S
|

g leperlerre ey eelaaal
i
|
|

T T T T i T I YEAR
920 X A 5 60 N &
Fig. 2. NORWAY, (mean price - variable costs) deflated by consumer price index (1979 =
(100) Norwegian crowns/M® (Assumptions; 35% high quality timber, 309, low quality
timber 35%, pulpwood) (Source: Lohmander [18])
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2.1, General Model Assumptions

The object of the forest manager is to maximize the expected present value of the
forest stand and the forest land.
In period ¢, the maximization problem can be stated as;
P .
max W(t) = W*(t) = [ W*{+ 1) F'(P)dP

0

- (2.1.1)
+ [ e™[PV(t) + L] F'(P)dP
P
where the variables and parameters are;

P stochastic price process

W(t) expected present value at time ¢ just before P, has been observed and the forest
has not yet been harvested

P*(t) optimal reservation price at time ¢

L expected present value of the land which is “‘released” at the time of harvest

F'(P) Probability density function of P. The model can easily be generalized to the
case of a deterministic trend in the price and F,(P).

r rate of return in the capital market

F(t) Stand density as a function of time

2,2, General Model Results

Let us maximize the expected present value at time ¢. The problem is hence to choose
P*(t) optimally. From (2.1.1) we derive (2.2.1), which is the first order optimum condi-
tion.

SW*(t)
cP*(t)
If we assume that F’(P) is strictly positive everywhere, then (2.2.1) implies (2.2.2);
e"W*it 4+ 1) — L
40
(2.2.2) is the formula used to determine the optimal reservation prices through back-
ward recursion. The second order maximum condition is easily investigated ;
EWH(1)
aP*(1)?
Obviously we have an unique maximum! '
(Clearly, if P, is not stationary, and distant periods can not be regarded as indepen-

dent, W*(t + 1) = W*(t + 1, P,). Then, an optimal reservation price may not exist.
Furthermore, it may not be unique.)

= {W*t + 1) — e~"'[P*(1) V(t) + L]} F'(P*(t)) = 0 (2.2.1)

Py =

(2.2.2)

—e~ "V (t) F'(PX(t)) < 0 (2.2.3)

2.3. Numerieal Model Assumptions

Since we need some numerical assumptions in order to get numerical results, we assume
the following;

Volume function
Species: Pinus Contorta
Site index: HH0 = 20 meters
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1500 stems/ha, no thinnings

MAI: 6.4 m3/ha, year

Age at MAI: 60 years

V(t) — 630.3744(1-6.3582(~1/60))2-8967

(The empirical production data is presented in HAGGLUND [12] and the particular
functional form of the volume function is suggested by FripH and Nissox [10].)

Stand fm-ry 70}
mhd
m =

0 1 e Age (1)

Fig. 3. V(1)

Expected land value

L should in principle be determined endogenously as the present value of an infinite
series of future forest generations. This would however complicate the analysis very
much in the stochastic case since the rotation age in every generation is stochastic.
The error made here treating L as a constant is likely to be small if L is small in relation
to PV(t) for most P and t at the suggested rate of interest. Hence, L is given the value
1000 crowns/ha.

Time periods

The last year under consideration (the time horizon) is year 200. The time scale consists

of 40 periods, every period being b vears. (It is assumed that there is one possibility
to harvest every b year period.)

Rate of interest

r is given the value 3%.
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Net price distribution

The price is an independent identically distributed random variable (note that this is
more or less consistent with stationary price processes as the length of the time periods
increases according to (1.4.8)).

We assume that price has a uniform distribution with the probability density function
F'(P)

1
Py =T fora<P<a-+b |
0 elsewhere
a b |
low risk 75 50
medium risk 50 100
high risk 0 200

(Note that E(P) = 100 crowns/m? in all cases.)

2.4, Numerieal Analysis I

As a start, the deterministic optimum is calculated. We assume that the net price is
100 crowns/m?®. The present value as a function of rotation age is given in Figure 4.

Obviously, the optimal rotation age is 45 years and the present value is 7368 crowns/
ha. (Note that the cost of the first regeneration is not included here!)

Frasent rafue
Crownsha A

6000

I I T T - fl‘ 01
) @ D ) D 'r?:;

Fig. 4. The deterministic case

Making use of the formulas (2.2.2) and (2.1.1), it is possible to calculate the optimal
reservation prices and the expected present values recursively, starting from year
200 calculating backwards. We simply assume that the expected present value
W*(T + 1) = 0, where T denotes the last period.
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In Figure 5, we find the optimal reservation prices as functions of time, one function
for each risk assumption.

One should observe that the reservation prices increase with risk in the price distri-
bution. Obviously one should require a high price in order to harvest during high risk
conditions. .

Another observation is that the reservation prices decrease as time goes. Of course
this depends on the particular growth function and the rate of discount. However, the
Fripu and N1Lssox [10] growth function has been fitted to a large set of different species
and site indexes. The numerical phenomena discussed here hold for all cases.

0 T T A_QE l'.’”
[/ 10 20 Years
Fig. 5. The optimal reservation price
a = low risk
b = medium risk
¢ = high risk

The extreme value at year 200 is only an endpoint problem. However, it is very un-
likely that we should wait so long anyway (compare Figure 8.). In the next publication,
the sensitivity of the expected present value to the last possible harvest year will be
analysed.

A third observation is that the reservation prices are fairly constant within the time
interval 80-195 years. Obviously, the optimizing forest owner should every year during
that period have almost the same critical reservation criterion.

A final observation in Figure b is that a person who owns a forest that is 180 years
old (the optimal “‘deterministic rolation age” was 4b years) should not harvest his forest
under all market conditions! It is quite possible that it is optimal to wait longer!

Again, we should be aware that the growth function has been extrapolated in this
particular case. However, the principles remain valid.
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The graph of W*(t), the optimal expected present value, is given in Figure 6. Again,
there is an obvious difference between the different risk alternatives; when the risk
increases, then the expected present value increases. It should also be noted that the
expected present value decreases with time.

Assume that we select the reservation price P*(t) = co. (Note that P*(t) is likely
not to be the optimal reservation price!)

W*(t)

Crowns/[ha

S000-

0 i | T “J
0 0w 200 ears
Fig. 6. The optimal expected present value
a = low risk
b = medium risk
¢ = high risk
< = maximum present value in the deterministic case

Then, from (2.1.1), (2.4.1) follows.
W(t) = Wt + 1) . (2.4.1)

However, since it is possible to select any reservation price and we should select the
optimal one, it is clear that (2.4.2) follows;

W*(t) > W*(t + 1) (2.4.2)

(2.4.2) is quite consistent with Figure 6. The intuition behind (2.4.2) is that when the
time is ¢, then we can always choose to wait without any harvest activity until time
t 4 1. It can not be worse to have the option to wait one period than to be in the next
period directly. Hence, W*(t) must be at least as high as W*(t + 1).

Furthermore, when the time is #, there may be a positive probability to obtain a price
in that period which makes it better to harvest than to wait until { + 1. Thus we get
(2.4.2).

Figure 7 shows the probabilities (at year zero) that different time periods are the opti-
mal harvest periods under the different risk regimes. It it clear from the graphs that the
optimal harvest age is not “‘deferministic”. It is rather likely that we harvest ten years
before or 15 years after the deterministic rotation age 45 years.
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Of course, when the risk decreases, we approach the case of a constant price. Then
the rotation age is 45 years with probability 1. The graph shows that the probability
distribution function becomes more flat as the risk in the price distribution increases.
In the case of high price risk, the probability that you should harvest at the age of
75 years is 2.2%. In the low risk case, this probability is only 0.4%. Again, similar
qualitative numerical results have been obtained when other site indexes and species
have been tested.

Frabn{cutl
. |
39—'
ﬂ_

e

H"--..

S— i § i
01+ T T — 1 = — —= Age (t)
[/~ 4 L] & 60 0 & ) 100 Years

Fig. 7. The probability (at year 0) that harvest is optimal
a = low risk

b = medium risk

¢ = high risk

Frob (nal yet harvesied)

0 T ] 7 T e T T - A H}
iH W B 8 D& N W M s
Fig. 8. The probability (at year 0) that optimal harvest has not yet taken place.
a = low risk )
b = medium risk
¢ = high risk
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Figure 8 is closely related to Figure 7. It shows the probabilities (at year zero) that it
has not yet been optimal to harvest the stand. In other words, Figure 8 also shows the
probability (at year zero) that the stand is still “alive” at a given age.

Again, we find that the probabilities of early and late harvests are larger under the
high risk regime than otherwise. Maybe Figure 8 is the explanation why we today in some
countries observe forest stands that are much older than what is recommended in forest
acts ¥ Maybe it simply is optimal to wait for better prices ?

3. Discussion

It is always dangerous to draw conclusions based on results from particular numerical
models. Furthermore, any model is just a model of reality. Important relationships in
reality may be forgotten. The main limitations in this numerical analysis have been;

a. The growth function is very rough and based on a limited set of parameters. Further-
more, the production tables are based on a limited set of field experiments. Hence,
the reliability is probably low, especially at high ages. Of course, in the numerical
model, the growth function is extrapolated far outside the experimental material.
This should be considered, but since the most probable harvest ages are rather low
(compare Figure 7), this is not critical to the derived results.

b. The price probability density function has no empirical support. However, compare
Figure 1 and Figure 2, the price is (or has been) far from deterministic and constant,
which is usually assumed in forest economics. Furthermore, three different risk cases
are given which make it possible to look at the sensitivity to price risk assumptions.
The author is convinced that future prices can not be perfectly predicted. The ques-
tion is only the level of unpredictability.

c. It is quite possible that it would be optimal to do some thinning before the final
felling. However, it is at the present difficult to make quantitative studies of the
optimal thinning pattern over time. The reason is that existing production funetions
(at least in Sweden) are based on production experiments with “traditional” and
fairly intensive thinnings (compare Ertksson [7]). When it comes to Pinus Contorta,
some of the main Swedish producers advocate the method of no thinnings. WiEs-
LANDER [32] and BsuruLr and FrEws [3] have found that forestry without thinnings
is more profitable than management according to traditional methods with thinnings
in stands with Picea Abies in the south of Sweden.

d. Tt is quite possible that the net price is size dependent. This has not been taken into
consideration in the present analysis. Probably the size dependence is not very high
in the most probable harvest ages, particularily if the roundwood is used as input
in the pulp industry. It is very easy to adjust the analysis through the introduction
of a time dependent shift in the price distribution.

Obviously we live in a world which can be treated as stochastie (Compare Figures 1
and 2) even if it is based on deterministic relationships that we can not observe or do
not know perfectly. Obviously this has important implications for the optimal manage-
ment of natural resources such as a forest (compare Figures 5, 6, 7 and 8).

It is important that we use the correct decision criteria under these conditions. In
the present example we were able to increase the expected present value with between 8
and 559, at year zero!

A more general treatment of the problem under Investigation will appear in 1987,
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