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It is shown that and how it is possible to benefit from flexible initial investments and stochastic
changes in Martingale prices in sequential information and decision problems that are typical in
forestry. At T0, several species are planted in a mixed forest stand. At T1 (71> T0), the prices of
the different species are observed and one species is selected for continued production. A better
selection can be made than earlier. The final harvest takes place at T2 (T2 > T'1). The expected price
at T2 is the price at T1. However, also here the price variability and the time difference T2 —T1
increase the expected profit thanks to the Jensen Inequality. If prices increase, this increases the profit
but the profit does not decrease by net price drops below zero. We may stop harvesting in that case
and the minimum profit is zero.

KEY WORDS Forest modelling, decisions support in forestry.

1. INTRODUCTION, GENERAL QUESTIONS

—Is it possible to increase the expected profit by replacing decisions based on
deterministic models by adaptive decisions in the presence of stochastic prices
that are Martingales?

—How is the expected profit affected by the level of flexibility determined by the
properties of the initial investment?

—Do the planning horizon and the initial states of the stochastic processes
matter?

These questions will be addressed and answered via the analysis of an adaptive
multi period information and decision model with Martingale price processes.
The principles and qualitative results will be discussed via a general model.
Finally, numerical answers relevant to multi species forestry are derived and
presented. The stochastic properties of real pine pulpwood export prices and real
birch pulpwood export prices are determined and discussed.

The problems discussed in this paper are in several ways very different from
other stochastic resource management problems that have been studied through
adaptive optimization. Most articles on adaptive resource management that are
found in the literature are devoted to the following issues:

i. Continuous extraction of a homogeneous resource stock with or without
growth. The growth and/or the price is a stochastic process. Gleit [4], Kaya
and Buongiorno [7], Lohmander [9, 11, 14, 21], Pindyck [28].
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. ii. Pulse extraction of a homogeneous resource stock with or without growth.
The growth and/or the price is a stochastic process. Brazee and Mendelsohn
[1], Johansson and Lofgren [8], Lohmander [9, 12], Norstrom [27]. Risvand
[30].

The first class, i., finds the theoretical foundations in the stochastic optimal
control literature. The second class, ii., consists of applications of optimal
stopping theory. In most cases, it is also important to understand the behaviour of
the stochastic processes and how to empirically estimate such. In recent years,
new tools have been found in the pure and applied chaos theory, a good example
of which is May, Beddington, Harwood and Shepherd {[24]. Among the
introduced classes, we should mention:

iii. Probability. random processes and estimation. Ito and McKean (6],
Grimmet and Stirzaker [5], Malliaris and Brock [23], Pindyck and
Rubinfeld [29]

iv. Optimal statistical decisions. DeGroot [2], Fleming and Rishel [3]

In the papers in classes i. and ii., the harvest (extraction) levels have been
optimized and the resource has been completely described through the stock size
or the age distribution. In this paper, the structure of the problem is quite
different. The species composition is a temporal decision variable and the prices
of the different species are described as stochastic processes. Hence, the
methodology used and the normative results have not been possible to find in the
literature. Still, the author is convinced that the reader will find the results
reasonable in applied forestry planning situations.

1.1. Results from the Theory of Finance

It is a well known and seldom questioned result that one can not gain an expected
profit from adaptive behaviour in the financial markets if the prices are in fact
Martingales. This idea can be found in Samuelson [32] and the title of the article
“Proof that properly anticipated prices fluctuate randomly” reveals the content. If
a stochastic process P is a Martingale in discrete time this means that the
expected value of P at time ¢ + 1 is equal to the value of P at time .

The idea presented by Samuelson [32] is the following: Assume' that we own
one unit of something called X in period ¢, the physical properties of which do not
change over time. If it could be calculated, via past information ‘including the
price P (available at 1), that the expected price of X is higher in period ¢ + 1, then
we should not sell X in period t. In order to sell X already in period ¢, we would
like the price in period ¢ to be at least as high as the calculated expected price in
t+1. (Note that all problems associated with risk aversion etc. have been
ignored.) In other words: If we expect the price to increase, it has already
increased.

In the same way: If the expected price in period ¢ + 1 is lower than in period ¢,
then we should sell X already in period ¢ even if the price in period ¢ would have
been as low as the expected price in period 7+ 1: If we expect the price to
decrease, it has already decreased.

Ever since Samuelson wrote his famous article, the Martingale price hypothesis
(with minor modifications because of the rate of interest, inflation etc.) has
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dominated the stock -market theory. If prices have not been Martingales, the
market has been said not to be “fair”.

Clearly, if prices really are Martingales, we do not know if we should buy or
sell today -or tomorrow in the pure stock market situation discussed by
Samuelson. However, the usual “‘intuitive” interpretation that we can not benefit
from adaptive decision making in the presence of Martingale prices is not correct
in the more interesting but very common multi stage information and decision
problem to be discussed below.

1.2. Two Reasons why we may Benefit from Stochastic Martingales

In fact, there are two distinct reasons why we may benefit from adaptive decision
making in the presence of stochastic Martingale prices in temporal production
problems.

—We may, via a flexible initial investment, delay the final production decision.
This way. we have time to observe the development of the product prices. In a
late stage of production, we can select the product that turned out to have the
most positive price development. The higher the price variability, the more
important is the flexibility obtained via the initial investment.

—The profit is a kinked convex function of price: If it turns out that the final
net price (price minus variable production costs) falls below zero, further price
decreases will not decrease the profit, since we may stop production { harvesting).
Hence, via the Jensen inequality, we easily find that the expected profit increases
with the price risk (proportional to standard deviation in a Normal distribution).
When we have Martingale prices, the risk increases with the standard deviation of
the stochastic change (positive or negative “‘increment”) each period and the
number of periods until the final point in time when the product should be sold
(and/or, in forestry problems, harvested).

The concrete forestry example is the following: We plant several species in the
initial stand (which represents a flexible investment). Several decades later we
select one species for continued production using information concerning the
latest prices of the different species. Hence, we gain from stochastic variability in
the Martingale prices until the selection time. We also gain from variability in the
final stage of production thanks to the “Jensen inequality effect” discussed above.

2. QUALITATIVE ANALYSIS

In this section, a qualitative analysis will be made of a model which is simple but
still sufficiently complex to give results that are relevant answers to the questions
raised in this paper. The main ambition is to present the general principles to the
reader in the most simple and transparent form. The presented qualitative graphs
will make it possible for the reader to investigate the relevance and applicability
of the principles.

2.1. General Problem Structure

Figure 1 illustrates the structure of the multi period information and decision
problem: PAt and PBt denote the net prices (price-variable harvest and
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Figure 1 In forestry, we should not select only one species already at the time of plantation, at TO.
We should have many different species in the first stage of production. Then, later on, at T'1, we can
make a better prediction of future prices and may perform a selective adaptive thinning based on the
latest price information. The figure illustrates a typical situation: PAr and PBr denote the deflated net
prices (price-variable costs in harvesting and transportation) of the species A and B. If the state at T0
is x, then the one standard deviation boundary of the prediction of future states are C1 and C2 in the
periods T1 and T2 respectively. If we make a new prediction at T2 based on the revealed and
observed state v, then the prediction of the state at T2 is quite different. The one standard deviation
boundary of the prediction in period T2 is then C3.

transportation costs) of species A and B in period t. In order to simplify notation,
we denote PAt and PBt “prices”. The two dimensional state space, with the
dimensions PAt and PBt, is shown for t=T0, T1 and T2. PAt and PBt are
stochastic processes. Later on, we will discuss the stochastic properties of these in
more detail. An initial assumption is that they are two (possibly correlated)
Martingale processes. At T0, we do not know the future behavior of the prices.
However, using information concerning the stochastic properties of the processes,
we may at T0 estimate the probability density functions of the state in the future
periods T1 and T2. In case the processes are in fact Martingales, the figure shows
the typical development of the boundary (the circles C1 and C2) representing a
fix number of standard deviations from the expected value. Most importantly,
when we are dealing with Martingale processes, the best prediction of the future
value of the process is the latest observed value of the process (at the time of
prediction). The expected error of the prediction increases with the prediction
horizon. Note that the radius of C2 is larger than that of Cl.

2.2, Selection of species at TO, the “stiff approach”

We have to select what species (only one) to place in the fores stand at T0.
Then, if trees of the two possible species A and B have tae same growth
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Figure 2 The “harvest price” is defined as the maximum of the (net) price at T2 and zero. If the
price is below zera, it is possible to stop harvesting and the profit is the same as if the price would
have been zero.

development and have the same properties in every sense except that the prices
are PAt and PBt, then the optimal selection should be based on the estimated
prices at the time of final harvest, T2. T2 is assumed to be fixed in this discussion
but we may benefit from adaptive behaviour. If the price happens to be negative
at T2, we do not have to harvest at all. Hence, the “price” is bounded from
below by zero. The “harvest price” is defined as the maximum of zero and the
price at T2. This is shown in Figure 2. The harvest price is a kinked convex
function of the price at T2.

Figure 3 shows how the expected harvest price is affected by increasing risk in
the price distribution at 72. If the expected price is close to zero, a0, then
increasing risk implies that the expected harvest price increases. H(a0, 20) <
H(al, a2) < H(a3, a4). This is a typical result in forestry in remote areas. If the
expected price is strongly positive, b0, then the expected harvest price is the same
before and after increasing price risk in the illustration. H(b0, b0) = H(b1, b2) =
H(b3, b4). If the stand is located far away from the mills, this means that the
transportation cost is high and that the expected net price, “price”, may be close
to zero. However, since we have the option to stop harvesting in case price is
below zero, we benefit from price variability. Only the positive deviations from
zero affect the expected harvest price. This observation is closely related to
observations by McDonald and Siegel [25, 26].

Furthermore, if we have Martingale prices, the expected deviation from the
expected value increases with the prediction horizon. In fact, it turns out that,
thanks to the central limit theorem, the probability distribution of the future state
approaches the normal distribution as the number of periods increases irrespec-
tive of the shape of the probability distributions of the individual increments. The
variance is proportional to the prediction horizon and the standard deviation is
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Figure 3 The figure shows how the expected harvest price is affected by increasing risk in the price
probability distribution at T2 for different levels of the expected price (a0 and b0). We benefit from
increasing prices when the price is above zero. We are not affected by decreasing prices when the
price 1s below zero. H(x, y) is the expected harvest price when the price takes the values x and y with
50% probability each. When the expected price is close to zero, a0, then we benefit from increasing
risk. When the expected price is high, b0, the risk is less important (of no importance in the figure) to
the expected harvest price.

proportional to the square root of the prediction horizon. This is shown in Figure
4. Compare the two dimensional case shown in Figure 1.

2.3. The Jensen Inequality Effect

We end up with the following important conclusion, the “Jensen inequality
effect”: Since the harvest price is a kinked and convex function of price and the
risk in the price distribution increases with the prediction horizon, the expected
harvest price increases with T2. This effect is stronger in cases where the
expected price is close to zero than otherwise.

2.4. The role of thinning in the “stff” problem

We may assume that the initial number of plants per area unit in the stand is
reduced by 50% at T1 via a thinning. The thinning costs are usually very high
compared to the revenues. Hence, we may simply assume that the net thinning
profit is zero. This is a common situation at least in Swedish forestry.
Nevertheless, it may very well be economically justified to have more stems in the
forest in the initial phase of production than in the end because the quality of the
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Figure 4 When the initial price is 100 SEK at 1 =0, then the best prediction of a future value (the
true expected value) is 100 SEK when the price process is a Martingale. The one standard deviation
boundaries of the prediction are shown. The standard deviation of the predicted value is proportional
to the square root of the prediction horizon. The calculations are based on the parameters estimated
from the real pine pulpwood export price series, RPPP.

stems is very much improved by spatial competition. In a stand with a small
number of stems, the branches grow too much. Then the timber quality and price
decrease.

2.5. The Flexible Initial Investment and Selective Thinning

Now, we turn to a two stage information and decision problem. At 70 we place
two different species in the stand, A and B. The number of stems per area unit is
the same as in the stiff case before thinning. At T1, 50% of the stems are taken
away via selective (adaptive) thinning. The species chosen for continued produc-
tion is selected via the rule illustrated in Figure 5a. The idea is the following:
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Fi 5a The optimal adaptive decision at T'1 should be based on the revealed and observed state in
the (PAl, PB1) space at T1. Species A or species B should be selected for continued production

according to the figure.
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Figure Sb When the parameters of the different species are not the same, then the optimal decision
boundary is generally not the one shown in Figure 5a. Compare the main text. -
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When the state at T'1 has been revealed and observed at T1, the expected
profitability of continued production is calculated for each species alternative,

If the species have the same properties except for the prices and if the two
stochastic price processes have the same stochastic properties, then the species
that happens to have the highest price at T'1 is the species that should be selected.
Of course, these calculations are affected by the *‘Jensen inequality effects”
discussed earlier. The time horizon of (continued and final) prediction is now
equalto T2—-T1

However, if species A has a “more stochastic” price process (the variance of
the increments is higher) than species B, then the “Jensen inequality effect”
improves the expected profitability of species A compared to species B. Figure 5b
shows a possible optimal selection rule in this case. Figure 5b is relevant also in
case the two species have price processes with the same stochastic properties but
the final harvest year of species A occurs later than the corresponding age of
species B. This is the case since the prediction horizon increases the expected
harvest price thanks to the “Jensen inequality effect”.

3. QUANTITATIVE ANALYSIS

Now, we will calculate the expected harvest price that is obtained when the
optimal adaptive selective thinning rule is used. We assume that two species are
planted at 70 in a mixed forest stand. The first step is to investigate the stochastic
properties of the prices of two typical forest species in Swedish forestry, namely

RPPP
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Figure 6 The Swedish real pine pulpwood export price series RPPP. (The export value divided by

the export quantity, deflated by the consumer price index.) Source: Skogsstyrelsen. All data are found
in the empirical appendix.
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pine and birch. These species, and closely related species with similar properties,
are common in most forest producing countries in the north. Both species can
most often grow on the same land. Moreover, the species are very different with
respect to diseases: Normally, a particular disease will only attack one of the
species. Hence, a mixed plantation or naturally regenerated forest stand will also
give us the important option to survive species specific diseases. Related issues
have been discussed by Lohmander (20).

3.1. The Prices of Pulpwood Based on Pine and Birch

Figure 6 shows the time path of RPPP, the real (deflated by consumer price
index) export price of pine pulpwood, from 1970 to 1989. The series has been
obtained via the official statistics from Skogsstyrelsen. The “raw” data consist of
the export value series, the export volume series and the consumer price index
series. These can be found in the empirical appendix.

Figure 7 shows the time path of RPHP, the real export price of hardwood
(mainly birch) pulpwood. The series has been derived in a way similar to the
series RPPP. All raw data are included in the empirical appendix.

If the prices of the two species do not follow each other over time, then it could
be interesting to invest in a mixed species stand. Figure 8 illustrates the time path
of DIFFPMH, the difference RPPP-RPHP. Obviously, the difference between
the prices of the two species changes dramatically over time. In 1977, RPPP was
20 SEK higher than RPHP and in 1985, RPPP was 4 SEK lower than RPHP. We
should be aware that the change in the price difference over time is very high
compared to the absolute levels of the two prices. Compare Figures 6 and 7.

RPHP
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Figure 7 The Swedish real hardwood pulpwood export price series RPHP. (The export value divided
by the export quantity, deflated by the consumer price index.) Source: Skogsstyrelsen. All data are
found in the empirical appendix.
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gigm 8 The price difference process DIFFPMH {= RPPP — RPHP). Compare Figure 6 and Figure
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Figure 9 The sample autocorrelation function of RPPP
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Figure 10 The sample autocorrelation function of RPHP
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Figure 11 The sample autocorreiation function of DIFFFMH
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Furthermore, the prices RPPP and RPHP should be reduced by the variable
harvesting and transportation costs when we look at the profitability of harvesting
the different species. Clearly, the variability over time in the difference between
the prices of the two species is very high compared to the net prices
(price-variable costs in harvesting and transportation). This observation is of

3.2. Stochastic Properties of Species Dependent Pulpwood Prices

Now, it is important to find a model that fits the processes RPPP, RPHP and
DIFFPMH. The first and most natural hypothesis, supported by the above
discussion, is that the prices are Martingales. A Martingale is a nonstationary
process and the autocorrelation does not approach zero as the number of lags
approaches infinity. If, on the other hand, the series are stationary, then the
autocorrelation should approach zero as the number of lags approaches infinity.
Compare Pindyck and Rubinfeld [29].

The Figures 9, 10 and 11 show the sample autocorrelation functions of the
three processes RPPP, RPHP and DIFFPMH respectively. Clearly, the sample
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Figure 12 The first difference of RPPP, (=DRPPP), plotted against the first difference of RPHP,
(=DRPHP). The variances of DRPPP and DRPHP are 46.37 and 50.08 respectively. DRPPP and
DRPHP show positive correlation. The linear correlation coefficient R = 0,643 and R2=0.414
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autocorrelation seems to decrease as the number of lags increases in all cases.
However, the number of available observations (years) is low. Hence, we should
not reject the hypothesis of Martingale processes on these grounds. In other
words, if the number of observations is small, the probability is high that we
obtain sample autocorrelation functions that indicate stationarity also when the
stochastic processes are in reality Martingales. Since we have no theoretical
reason to expect that the processes are not Martingales, we continue to assume
Martingale processes. As time passes. in case the same kinds of forest products
will be sold in the future (which is not at all clear!), the number of observations
increases. Then, more interesting statistical hypothesis tests could be performed.
We should be aware, however, that the types of forest products that are sold in
the markets today are not the same as the types sold a century ago. Maybe we
will never get a statistically ‘“‘satisfactory” number of observations? Maybe, we
will have to use more general product definitions in order to get longer price
series? Then, which is the best way to define a forest product?

Some estimations of the stochastic properties of the processes will be needed to
support the numerical analysis. Let us denote the increments, or the first
differences, of the three stochastic processes RPPP, RPHP and DIFFPMH by
DRPPP, DRPHP and DDIFF in the same order. The means of DRPPP, DRPHP
and DDIFF are not statistically different from zero and the variances are 46.37,
50.08 and 34.45 respectively. DRPPP and DRPHP are correlated: R2 was found
to be 41.4%. This seems reasonable in the light of Figure 12.

3.3. A Numerical Adaprive Selective Thinning Model

In order to estimate the expected harvest price which is obtained via optimal
adaptive behaviour in the mixed species stand, a numerical model has been
designed. The expected harvest price, I'(.), is a function of the prices at T0, PAO
and PB0, and is calculated from (1).

[(PAO, PB0) = J Jf Q(PA1, PB1)f(PAL, PB1|PAO, PB0)dPB1dPAl (1)

f(.) is the two dimensional conditional probability density function of the prices
at the point in time when the selective thinning takes place, T'1. f(.) is calculated
as an approximation of the two dimensional normal distribution according to the
method found in Ride and Westergren [31]. The reference also contains the
formulae needed in the derivation of probability density functions of higher
dimensionality. This is of particular interest when more than two species are
planted in the same stand. Q(.) denotes the expected harvest price as a function
of the revealed price state at T1 and optimal selective choice of species for
continued production until T2. :

Q(.)=max( J S(PA2)g(PA2 | PA1) dPA2. | S(PB2)A(PB2 | PBI) dPBZ) @)

g(.) and h(.) denote the conditional probability density functions of the prices at
the point in time when final harvest takes place, T2. §(.) is the “harvest price
function”, S(P) = max(0, P), which is also found in Figure 2. (P denotes PA2 or
PB2.)
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3.4. The Expected Value of a Mixed Species Stand

As the standard deviations of the increments of the price processes increase, the
expected value of the harvest price conditional on optimal adaptive species
selection increases. This is shown in Figure 13. The standard deviations of the
increments are proportional to k in the figure. The results presented are based on
the estimated processes when species A represents pine and species B birch.
Selective adaptive thinning and final harvest take place 70 years and 120 years

EXPECTED HARVEST
PRICE

SEK A

130

120+

10—
.'

100

20—

80—

70—

60—

SOJ

I 1 T I ] » PAO
0 25 50 75 100  SEK

Figure 13 The expected harvest price conditional on optimal adaptive selective thinning as a function
of PAQ and k. PAO is the price of species A at T0 and PBO, the price of species B at T0, is 50 SEK.
The thinning takes place at T'1, 70 years after plantation, T0. The final harvest takes place at T2, 120
years after T0. It is assumed that the stochastic properties of the prices of species A and B are those
reported for RPPP and RPHP respectively when k takes the value 1.0. When & takes the values 0.5
and 1.5, then the standard deviations of the price differences are 50% lower and 50% higher than
according to the investigated price series. Note that the expected harvest price is 74 SEK when the
initial prices of the two species, PAO and PB0, are 50 SEK and the stochastic properties of the prices
are those estimated from the empirical data, k =1.0.
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after plantation respectively. The price of species B is S0 SEK at year 0 and the
price of species A is found on the PAO axis.

The functions in Figure 13 are convex because of the following reason: When
PAO is low compared to PBO, the probability is low (but positive) that species A
will be selected at T1. Hence, the expected harvest price is only slightly affected
by marginal changes in PAO. When PAQ is high compared to PBO, however, the
probability is high that species A will be the optimal alternative at T1. Then the
expected harvest price is of course strongly affected by marginal changes in PAO.

The Figures 14 and 15 show how the difference between the initial price at TO,
PAO, and the expected harvest price, is affected Dy the parameters.

The general lesson is of course that we should select species as late as possible.
The later the selection is made, the higher is the relevance of the latest price
information and the better is the decision. Here, however, 2 warning is
motivated. Reasons may exist in practical applications why one should not wait
too long:

—Maybe the adaptive and selective thinning must be performed when the trees
are still rather young. The remaining trees should be able to utilize the released
production resources in the neighbourhood and this ability may be more or less
age dependent.

—Maybe severe physical damage will result from late thinnings in the forest
stand, in particular when heavy harvesting machines are used.

k=1.3

k1.0
k:0.5
, | ——>PAO
0 25 50 75 100 SEK

14 ¢ = The difference (Expected harvest price conditional on optimal adaptive thinning—
PA0). The assumptions are the same as those reported in connection to Figure 13. The expected
profitabiliry of multi species forestry increases with the price difference standard deviation (2 <b <c).
When the stochastic properties of the prices are those found in the empirical material and the initial
prices of both species are the same, 50 SEK, ¢ takes the value 24 SEK (b). This is of course a strong
reason 10 invest in a multi species stand.

w40 b WA ) Sale ke W



g

MULTI SPECIES FOREST STAND 245

.5
.0
3
—= PA O

~x X
o

I I 1
0 25 50 V] 100 SEK

Figure 15 ¢ =The difference (Expected harvest price conditional on optimal adaptive thinning—
PAQ). The assumptions are the same as those in Figure 13 except for that the thinning and final
harvest take place earlier: T1 =30 years and T2 = 100 years. Note that the flexibility in late stages of
production obtained in multi species forestry is more important (¢ is higher in Figure 14 than in
Figure 15 ceteres paribus) in case we can make the thinning and final harvest decisions late. However,
also when thinning takes place 30 years after plantation, we gain a lot from the species flexibility:
¢ =17 SEK when both initial prices are 50 SEK (b).

These stand and technology specific issues must of course be discussed and
analysed with a much more restricted optimization model of less general interest.

4. DISCUSSION

The simple analysis of this paper has shown that considerable economic gains can
be expected in the presence of Martingale price processes if we undertake flexible
initial investments and adaptive selective thinnings. When we consider multi
species forestry, it is tempting to analyse the profitability of this in terms of
synergy effects in wood production. This has been one of the main topics in forest
production research during many decades. The reported “‘mixed forest effects”
have been small and ambiguous,

The author of this paper is convinced, however, that the expected profit
obtainable from multi species forestry has been strongly underestimated.

The economic benefits that are resuits of flexibility and late selective adaptive
decisions make multi species forestry particularly interesting in the rapidly
changing and unpredictable modern society.
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EMPIRICAL APPENDIX

This appendix contains all the data that have been used in the analysis. The data
consists of six series which are defined below.

YEAR EXQPP EXQHP EXVPP EXVHP KPI

70 478501 135753 27871 7466 135
71 606347 93984 38652 4903 145
72 600470 48569 35322 2585 154
73 683335 56614 43854 3055 165
74 211118 144871 17894 9768 181
75 176165 162987 20663 16036 198
76 152107 152044 21099 14875 219
Tz 16950 46312 2451 4449 243
78 10631 86748 1431 8332 267
79 8355 107240 1043 11484 286
80 33304 133710 4769 19512 327
g1 47276 55985 7850 7964 366
82 9646 17095 2042 3393 397
83 35138 76429 6918 13374 435
84 18349 244569 3522 47504 467
85 8268 288838 1741 66896 503
86 24486 170443 6872 39032 523
87 12065 154077 3274 38459 546
88 15821 130864 5385 47760 578
89 17000 94000 5468 31009 612

(continued )
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_{continued from p. 247)

Source: SKOGLIG STATISTIKINFORMATION, SKOGSSTYRELSEN,
PROGNOS OCH STABSAVDELNINGEN, NR. 845, 1990-05-07.
ISSN 0281-5044
Definitions: YEAR = The year — 1900
EXQPP = Export quantity pine pulpwood (m3)
EXQHP = Export quantity hardwood pulpwood (m3)
EXVPP = Export value pine pulpwood (1000 SEK)
EXVHP = Export value hardwood pulpwood (1000 SEK)
KPI = Consumer price index in Sweden
(KPI=100 in YEAR 63)
(The index 612 in 1989 is obtained via
extrapolation)

NUMERICAL APPENDIX

This appendix contains the computer code that calculates the expected harvest
price conditional on optimal adaptive selective thinning. The expected harvest
price is determined for different parameter assumptions. The results. are
presented on the output screen as in Table 1. All definitions and principles used
can be found in the main text.

Table 1 The computer output screen
SELECTIVE ADAPTIVE THINNING AND STOCHASTIC PRICES
PROGRAM SEL.BAS VERSION 90-12-10

LOHMANDER PETER
EXPECTED OPTIMAL
HARVEST PRICES:
PARAMETERS PAD
PB0 K - | 0 25 50 75 100

50 05 100 30 50.9 51.3 56.0 75.0 99.5
50 05 100 70 50.9 52.4 58.8 76.6 99.9
so 05 120 30 51.5 51.9 56.6 .5 99.9
50 05 120 70 51.6 53.0 59.2 76.8 99.9

50 1.0 100 30 59.9 62.3 67.7 8§2.7 1017

50 1.0 100 70 61.2 66.3 72.0 87.7 1048
so 1.0 120 30 62.2 64.6 69.9 g84.6 1033
50 10 120 70 63.1 68.2 733 89.1 105.6
50 1.5 100 30 72.0 76.4 81.9 95.2 110.6
50 15 100 7 78.2 2 88.6 102.3  118.1
50 15 120 30 74.9 79.4 84.5 974 1119
50 15 120 7 82.6 81.7 92.9 105.4 121.2
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REM
REM PROGRAM SEL.BAS
REM LOHMANDER PETER 90-12-10 13.54

REM

DEFDBEL A-H, 0O-2

REM T2 = AGE OF FINAL HARVEST

T2 = 1006

PI = 3.1415926525#

SAPROC = (46.37) - .5- SEPROC = (50.08) * .5

R2 = .41
R=R2 = .5
CLs

PRINT " SELECTIVE ADAPTIVE THINNING AND STOCHASTIC PRICEsS"
PRINT " PROGRAM SEL.BAS VERSION 90-12-10"
PRINT " LOHMANDER PETER ™

LU |

PRINT

PRINT ™ EXPECTED OPTIMAL HARVEST DRICES:®
PRINT " - PARAMETERS ~= =ececceceee- PAQ =——=mccccemme "
FRINT " ©P©BO E T2 T o] 25 50 75 loa"

REM **ttw*t*wi**ttn*r*ttw*:w****t**t-*
REM A MODEL PARAMETER LOOP STARTS HIRE
REM *****i**wttti**t!t**n**w*w*t**t***
FOR E = .5 TO 1.5 8TEP .5

BRINT t n

SA = SAPROC * K: SB = SEPROC * K

FOR IT2 = 100 TO 120 ST=P 20: T2 = ITZ
FOR IT1 = 30 TC 70 STEP 40: T1 = 171
PBO = 5p

PRINT W u

PRINT USING "EEFEEY ;. PBO;

PRINT USING "EF.E": K

PRINT USING "FEEEN, T2; s

REM t**t**it***t****t*******tn*tw***t**tt**t*ni!*i**tit*i**ttti'
REM A LOOP WITH DIFFERENT INITIAL PRICES (PA AND PB) STARTS HERE

REM ****i****l‘**wt*t*********!*******n-***t‘l‘******I***t********l‘i‘

FOR IPAO = 0 TO 100 STEF 25: PAQ = IPAD

SATl = SA * T1 ~ ,5: SBT: = SB *T1 - .5 -
C=1/ (2 » PI = 5aT1 =* SBT1 * (1 - R2) * -5}
EVALUE = ¢

PROB = 0

FOR IPAl = (PAQ - SATI = 3) TO (PAD + SAT1 -» 3) STEP SAT1: PAl = IPa1l
TOR IPBl = (PB0O - SET1 * 3) TO (PBO + SBT1 =* 3) STEP SBT1: PBl = IPB1

Al = PAl - PAO: Bl = PB1 - PBO

G = (AL / SAT1) " 2 -2 * R w Al * By (SAT1 * SBT1) + (31 / SBT1) - »
H=-1/(2=*(1-7R2)) g
PRPAIPBl = C * EXP(H) * SAT1 * SBTI



250 P. LOHMANDER

REM _1--Ir-ahlz****t-**w*t*t****t****tt*i***:r LR 2 A E S 2 h 2 A R R X R R L R R T R R

REM THE EXPECTED HARVEST PRICE IF SPECIES A IS SELECTED IS CALCULATED
REH *******w*ti****t*i**t****r*t*t****t**********!**I****itt****t***i
SAT2 = SA * (T2 - T1) ~ .5

CA =1/ ({2 *PI} "~ .5 % SAT2): DA = -1 / (2 * SAT2 * SAT2)

EHARVA = 0: TPROBA = 0

FOR IPAZ2 = (PRl - SAT2 * 3) TO (PAl + SAT2 * 3) STEP SATZ2: PA2 = IPA2
A2 = PR2 - PAl -

PRPA2 = CA * EXP(DA * A2 * A2) #* SAT?

TPROEBA = TPROBA + PRPA2

HARVPA = PA2: IF PA2 < 0 THEN HARVPA = 0

EHARVA = EHARVA + PRPA2Z * HARVPA

NEXT IPA2

EHARVA = EHARVA / TPROBA

REH LA AR R R L L Y 2 R R R R R R R T T e,

REM THE EXPECTEC HARVEST PRICE IF SPECIES B IS SELECTED IS CALCULATE
o L R L T e e L T T
SBTZ2 = 5B = (T2 - T1) - .5

CB =1/ ((2 »PI, -~ .5 = SBT2): DB = =1 / (2 * SBT2 * SBT2

EHARVE = 0: TPROBB = (

FOR IPBE2 = (PBl - SBETZ * 3) TO (PB1l = SBT2 * 3) STEP SBT2: PB2 = IPB2
B2 = PE2 - PBl

PRPBZ = CB * EXP(DB * B2 * B2) » SBT2

TPROBB = TPROBE + PRPBZ2

HARVPB = PB2: IF PB2 < { THEN HARVPE = 0

EHARVE = EHARVB + PRPEZ » HARVPB

NEXT IPB2

EHARVB = EHARVE [ TPROBE

REM *dd kxR kit s ot o sk s S ook o st s 9 o o b o ok o 5 0 ok ok ook o e ok o ok o e o o o ok ok o o ok ok ek
REM THE SPECIES WITH THE HIGHEST EXPECTED HARVEST PRICE IS SELECTED

REM LA A AR Rl R A s ad A Rl Al bl kS L R L L LT

EHARVOPT = EHARVA: IF EHARVB > EHARVA THEN EHARVOPT = EHARVB
EVALUE = EVALUE + PRPRALPE1 * EHARVOPT
PROB = PROB + PRPA1PB1

NEXT IPBl: KNEXT IPaAl

EVALUE = EVALUE / PROB

PRINT USING "#####.#"; EVALUE;

NEXT IPAOQ

NEXT IT1

NEXT IT2

NEXT K

END



