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Abstract 

A dynamic multidimensional production system, with several interdependent processes, is adaptively controlled under 

the influence of stochastic market changes. An adaptive control function with low dimensionality that makes it 

possible to directly and indirectly control all parts of the interdependent processes is determined. Discrete parameter 

value combinations are investigated. Grid search is applied to find optimal control function parameter values via 

stochastic simulation, where the complete production system is simulated 100 times, during 200 years. The 100 time 

series of random numbers, each representing 200 years, used to represent stochastic market changes, are the same for 

every control function parameter combination. The optimal control function is determined for beech stands in 

Germany, as an adaptive harvest diameter rule, for different rates of interest and for different levels of market risk. 

With a discrete approximation of a uniform price probability density function with price variation within the interval -

40 to +40 EURO/m3, 3% rate of interest and optimal control, the expected present value was 62% higher than without 

risk. Without risk the optimal harvest diameter was 55 cm and with risk, 115 – 2 ( )t cm, where ( )t denotes wood 

price deviation in period t from the average wood price (EURO/m3).  

 
Keywords: Adaptive control function; Stochastic system optimization; Forest management. 

1- Introduction 

 

Many real world optimization problems concern management of systems under risk with large numbers of dimensions. 

Stochastic dynamic programming is a highly relevant method in most cases, but the dimensionality problem makes it 

practically impossible to really deal with the system in high resolution. Similar approaches have been used to optimize 

adaptive control functions also in other forest sector relevant applications. Lohmander [2] and [3], developed software 

and solutions for continuous cover forest management in Sweden, using a logistic stand level forest growth function. It 

was possible to determine the optimal harvest level as a function of current price and current stock level. This way, 

forest management could be optimized and the expected present value maximized. The optimal control function 

parameters and expected present value were determined for different rates of interest and for different levels of risk. 

Later, Lohmander and Mohammadi [7], analysed a similar problem with forest data and prices from Iran, using 

discrete time stochastic dynamic programming, with the methodology described in Lohmander [6].  

 

Lohmander [4] has shown that it is possible to use the method described in this paper also to solve forest industry 

company problems, where decisions concerning storage levels, industrial production, sales volumes and industrial 

production capacity investments are integrated in the analysis. Lohmander [5] demonstrated how the same basic 

method can be used to control trucks and roundwood logistics, taking the changing conditions in forest industrial 

plants such as saw mills and pulp mills into account. In the adaptive control function, individual truck drivers instantly 

obtained optimal driving, loading and unloading instructions, based on current product prices, present position(s) of 

the individual truck(s) and the amount of roundwood already loaded on the truck(s) and the current positions and stock 

levels at all industrial plants.     
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The approach used in this analysis makes it possible to let the complete system dynamics be treated correctly, as 

described by the dynamic equations. At the same time, adaptive control functions can be developed, that optimize the 

system behaviour under the influence of stochastic processes such as market changes etc.. 

 

The general method is the following: 

A dynamic multidimensional production system, with several interdependent processes, is adaptively controlled under 

the influence of stochastic market changes. An adaptive control function with low dimensionality that makes it 

possible to directly and indirectly control all parts of the interdependent processes is determined. In the forest 

management application developed here, the adaptive control function determines the lowest diameter of trees that 

should instantly be harvested. In classical forest management planning, such a “limit diameter” is usually determined 

as a constant, which is applied irrespective of changes in market prices etc.. Now, in the present analysis, we let the 

limit diameter be a function of this type: 

   

(1)  ( ) ( )LD t t    

 

( )LD t denotes “limit diameter” at time t,  and   are parameters that should be optimized and ( )t is the 

stochastic market price deviation from the average market price in period t. 

2- Analysis 

 

 

The optimal control function was determined for beech stands in Germany, as an adaptive harvest diameter rule, for 

different rates of interest and for different levels of market risk. The empirical background to the conditions in these 

forests and estimated growth processes for trees in different diameter classes were reported by Schütz [8]. One 

important reason why this optimization problem has to be considered as multidimensional, is that the growth of trees 

in different diameter classes are not independent. For this reason, it is impossible to handle the harvesting decisions in 

different diameter classes as independent of each other, in order to reduce the number of dimensions. The central 

principle, empirically estimated by Schütz [8], is that the growh of trees in a particular diameter class is negatively 

affected by the total basal area of all other trees in larger diameter classes. According to Schütz [8], this dependence is 

strongly negative and the functional form is cubic. 

 

The dynamical model contains many functions, parameters and detailed assumptions that are impossible to describe in 

full detail in this short paper.  

 

Some of the particularly interesting and important functions are these: 

 

(2)    3

0 1 2( ) max ( ) ( ) ,0ki k b b LN d b C k    

The parameters are: 0 1 21.506969; 0.94255; 0.000183455b b b      

 

( )i k denotes the diameter increment per year of trees in diameter class k . The values of ( )i k , for different k  values, 

changes dynamically over time as a function of the developments of number of trees in the diameter classes larger than 

k . kd is the average diameter before increment of trees in diameter class k . ( )C k is a function describing the degree 

of competition for resources such as sunlight, water and nutrients via the root system, from larger trees. ( )C k  is 

defined as the total basal area per area hectare of trees with diameter larger than kd . We observe that ( )C k  is large 

for small trees and small for large trees. Equation (2) shows that the diameter increment is negatively affected 

by  
3

( )C k . This fact makes the development of trees in different diameter classes dependent on each other and it 
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also means that the management decisions of trees in one particular diameter class cannot be optimized without 

considering the direct and indirect effects on the trees in other diameter classes. The diameter increment functions (2) 

for the different diameter classes determine the probabilities that trees in different diameter classes move up the next 

diameter classes. The expected number of new trees that each period will appear as a result of natural regeneration, in 

the lowest diameter class, is a topic of special interest. This is discusses and analysed in detail by Schütz [8].  

 

We may summarize the dynamical model this way: 

 

(3)  
1( ) ( ) ( 1) ( 1) ( ) ( ) ( )t t t t t t tn k n k P k n k P k n k h k        

 

( )tn k denotes the number of trees per hectare in diameter class k in period t . 

( )tP k is the probability for trees in diameter class k to move up to the higher diameter class in period t . 

( )th k denotes the number of trees harvested (via optimal control) of trees in diameter class k in period t . 

 

Of course, ( )tP k  is a function of ( )i k , described in (2). ( )th k  is a function of the adaptive control parameters found 

in (1), the random development of the exogenous market conditions and the dynamically changing availability of trees 

in different diameter classes. 

 

Note that the adaptive control function (1) introduced in the present analysis indirectly controls the dynamics of trees 

in all diameter classes. If the market price increases, the limit diameter decreases. As a result, more trees in the larger 

diameter classes are removed. Then, the competition is reduced for all trees in lower diameter classes and they will 

grow more. Discrete control function parameter value combinations  ,  were investigated. Grid search was 

applied to find optimal control function parameter values via stochastic simulation, where the complete production 

system was simulated 100 times, during 200 years. The 100 time series of random numbers, each representing 200 

years, used to describe stochastic market changes, were the same for every control function parameter combination. As 

one could expect, with stochastic prices, it turned out that the optimal values are: 0 0    . The precise values 

are functions of all parameters in the problem. This means that we should harvest more if prices are high than if they 

are low, since the limit diameter is reduced as a function of high prices. 

 

3 Results 

 

In Figure 1. we find the expected present value without risk as a function of harvest diameter and interest rate. The 

optimal harvest diameter, equal to the limit diameter, is a decreasing function of the rate of interest. Furthermore, the 

optimal expected present value is a decreasing function of the rate of interest. 
 

 
 

 



9th International Iranian Operation Research conference 

27 April-29 April 

 

 

 

          

Shiraz University of  
technology 

Iranian Operation 
Research Society  

 
 
 

Figure 1. 

 
 

The expected present value per hectare under risk as a function of adaptive control function parameters is shown in 

Figure 2. For the rate of interest 3%. The optimal values of the parameters are  = ALFA = 115 and  = BETA = -2. 

 

 

 

 
Figure 2. 
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With a discrete approximation of a uniform price probability density function with price variation within the  

interval -40 to +40 EURO/m3, 3% rate of interest and optimal control, the expected present value was 62% higher 

than without risk. Without risk, the optimal harvest diameter was 55 cm and with risk, 115 – 2 ( )t cm, where 

( )t denotes wood price deviation from the average wood price (EURO/m3).  

 

In Figure 3., the optimal adaptive control function under risk, namely the market price dependent optimal limit 

diameter function, is plotted. The function is based on the control function parameters that gave the highest expected 

present value according to Figure 2.  Figure 2. also contains the optimal limit diameter function without risk, which is 

constant, also found in Figure 1. It is interesting to note that, under risk, the limit diameter is much higher than without 

risk, in case we have an average market price (Stochastic price deviation = 0). The price has to be much higher than 

the average price, about 30 EURO/m3 higher in this case, if we should harvest trees of the same size under risk and 

certainty. According to the model assumptions, the stochastic price deviation has a uniform probability density 

function with support on the interval -40 and +40 EURO/m3. Hence, the probability that the price deviation is higher 

than 30 EURO/m3 is 1/8 or 12.5%. So, if a tree has diameter 55 cm, we should harvest it with 12.5% probability if 

there is market risk. We should wait at least one more year with probability 87.5%. If the price is more than 30 

EURO/m3 higher than the average market price, we are ready to harvest trees that are smaller than what is optimal 

without market risk. This type of effect of market price risk on optimal management is what we should expect to find 

in problems of his type. The precise values found in Figure 3. are however only relevant in the particular example.  

 

 
 

Figure 3. 

 
 

 



9th International Iranian Operation Research conference 

27 April-29 April 

 

 

 

          

Shiraz University of  
technology 

Iranian Operation 
Research Society  

4- Conclusion 

 

It is possible to use the described method to improve the control of large stochastic systems of very different kinds. In 

many cases, there are no alternative approaches available that can solve the relevant problems in reasonable time. The 

concrete numerical results presented in this study should be considered as illustrations of what is possible to derive in 

similar problems. The numerical results are affected by many model details that are not possible to describe and 

motivate in detail in this short paper. One of the important modelling topics that is fundamental to work of this nature 

is definition and estimation of stochastic processes representing market prices and other stochastic disturbances of 

particular application relevance. In Lohmander [1], we find that alternative specifications of price processes and 

damage probability functions can lead to drastically different types of optimal resource control functions. For instance, 

autocorrelation functions and stationarity are important concepts to consider and estimate before detailed resource 

control models are developed and solved. In the present analysis, stationary and independently distributed market 

prices were assumed in all periods. Of course, in other cases, the process properties may be different. Furthermore, 

expected prices minus costs for harvesting and terrain transport in different size classes, were assumed to follow a 

diameter dependent net price function. The reader should be aware that future use of this approach requires familiarity 

with such functions and that the final model has not yet been constructed. Several examples of stochastic price 

processes in the round wood markets have been described and analysed in Lohmander [1]. In Finland, Sweden and 

Norway, these prices could be described as stationary first order autoregressive processes. In future applications of the 

optimization method described in this paper, it is suggested that the relevant price process parameters are first 

estimated from available historical tables and that the simulations of the 100 random price series is based on these 

parameters. It is also important to be aware of the fact that historical price series data are not always relevant to 

analysis of optimal decisions, at the present and in the future. New technologies, new demand structures and new 

discoveries of natural resources may change the fundamental structures and parameters also of stochastic market price 

processes. Relevant analysis has to explicitly take these things into account.   
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