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Abstract 

The global energy market prices may be considered as stochastic processes. These prices may be strongly influenced 

(partly controlled) by large producers and cartels, since production levels influence the price level. Under such 

conditions, optimal dynamic production plans have to be optimized using adaptive controls, derived via stochastic 

control theory and/or stochastic dynamic programming. This paper presents alternative modelling options and a 

detailed analysis of a sample problem. It is possible to use stochastic dynamic programming as a master problem in 

combination with detailed multidimensional solutions to production and logistics problems for each state and stage. 

This can be done in finite time and also in infinite time, via stochastic dynamic programming in Markov chains with 

linear programming as a solution method. A sample problem is defined as a stochastic dynamic programming problem 

for optimal adaptive control of energy production under the influence of market risk and energy reserve constraints. 

General results concerning how the optimal adaptive production decisions and expected resource values are affected 

by increasing risk in the energy markets are reported. The main results are presented in connection to the present 

modelling results. General conclusions are presented and suggestions for future research are given. 
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1- Introduction 

 

We are interested in the optimal control of large scale energy production. We will focus on oil production, traded in 

the world market. The natural resources of the world, including energy resources, spatial distribution and properties, 

are well described by Ramade [17]. Presently, the world energy market is rapidly changing in several ways. The global 

warming concerns have increased the interest in renewable resources such as biomass and solar panels. The biomass 

potential is large, in particular in Russian Federation, and optimal plans considering harvesting and infrastructure 

investments have been developed. Lohmander [12] and [14] present these results. Lohmander [13] calculates an 

optimal dynamic path for Sweden and develops general guidelines for rational coordinated decisions [11]. The global 

energy market prices may be considered as stochastic processes. No analytical and/or statistical methods have yet 

made it possible to make good and reliable predictions of these prices several years in advance. In particular during the 

latest period, the oil price variations have been very rapid, highly unexpected and dramatic. These prices may be 

influenced (partly controlled) by large producers and cartels, since production levels influence the price level. Gao et 

al [1] study these things from an applied perspective and also estimate a function that shows how the production levels 

of the cartel OPEC can influence the world price level. Under highly stochastic market conditions, optimal dynamic 

production decisions have to be optimized using adaptive controls, derived via stochastic control theory and/or 

stochastic dynamic programming. In some cases, it may also be possible to determine optimal stochastic control 

functions with other methods. Wen et al [18] suggest the use of approximate dynamic programming in oil production 

optimization applications. Lohmander [8] shows how combinations of stochastic simulation and quasi gradient 

methods can be used in adaptive control of systems where the dimensionality is too high for the otherwise relevant 

method stochastic dynamic programming. Now, however, we will really apply stochastic dynamic programming.  

 
 

a* Corresponding author: E-mail address: Peter@Lohmander.com 

 



9th International Iranian Operation Research conference 

27 April-29 April 

 

 

 

          

Shiraz University of  
technology 

Iranian Operation 
Research Society  

One important reason for this choice of method is that the dominating question is how we should adapt oil production 

to the very large variations in the world market prices. In order to influence the prices, it is necessary to have 

considerable market power and to control large shares of the total world production. This can only be done with the 

help of coordinated production decisions, taken by a large cartel. For this reason, in this paper, we focus on optimal 

cartel decisions concerning the total market adapted production. With this definition of the problem, which according 

to the author of this paper is the most relevant when we are interested in the total profitability, the dimensionality is 

not very high. Hence, stochastic dynamic programming is a very well suited optimization tool that also, with 

probability one, gives globally optimal decisions. The application of stochastic dynamic programming does not make 

it impossible to handle many dimensions in large scale production and logistics systems in an optimal way. 

Lohmander [5] shows how large scale industrial production problems can be solved using a stochastic dynamic 

programming model as a master problem with a linear programming subroutine that for each stage and state in the 

master problem solves the state and stage relevant optimal production and logistics problems. The illustrating example 

comes from the forest industry but the approach can also be used in the energy sector. That application had a finite 

horizon. Lohmander [9] uses a related approach to solve large scale forest industry problems with stochastic prices of 

pulpwood and imported raw materials. In that analysis, infinite horizon is used in combination with Markov chain 

theory and linear programming as a tool to solve the master problem. So, in that case, linear programming is used at 

two levels: In the stationary infinite horizon stochastic dynamic programming master problem and in the solution of 

the local plan optimizations, for every possible state in the stochastic dynamic programming master problem. 

Methodologically related work can be found also in Lohmander [6] and [7] and the different methods are described in 

Lohmander [10]. 

    

 

2- Analysis 

 

In every period t until we reach the planning horizon T , we maximize the expected present value, (.)f , for every 

possible level of the remaining reserve, s , and for every market state, m . (.)f takes the value 0 in period 1T  , 

which is shown in (1). In all earlier periods, the values of (.)f  are maximized for all possible reserve and market 

levels, via the control h , the extraction level. In a period t , before we reach 1T  , the control h  is selected so that the 

sum of the present value of instant extraction (.)  and the expected present value of future 

extraction ( ) ( 1, , )
n

n m f t s h n    is maximized. ( )n m denotes the transition probability from market state 

m to market state n from one period to the next. The control h has to belong to the set of feasible controls (.)H  

which is a function of t , s  and m . Equations (1) and (2) summarize the principles and the recursive structure.  

 

(1) ( 1, , ) 0 ( , )f T s m s m    

(2) 
( , , )

( , , ) max ( ; , , ) ( ) ( 1, , ) ( , , )
h H t s m

n

f t s m h t s m n m f t s h n t T s m 


 
      

 
  

 

In the code segments shown in Figures 1 and 2, an introductory sample problem is numerically defined and solved. 

hopt(t,s,m) denotes the optimal values of the control h .  d(t) is the period dependent discounting factor, based on the 

assumed rate of interest  5% in continuous time. In Figure 1, the three dimensional code loop makes sure that all 

values of f(.) and hopt(.) are initially set to zero.   
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Figure 1: Dimensions and initial conditions 

 

 

 

Figure 2 shows how the stochastic dynamic programming problem is solved, based on the following special 

assumptions: 

 

(3)  10 ; 0 ; 0 100 ;1 9T t T s m         

 

The extraction level is only constrained by the remaining reserve level. Extraction capacity constraints can, if needed, 

easily be included in the problem specification shown in Figure 2. The market state probabilities are calculated from a 

stationary and discrete approximation of a uniform probability density function with autocorrelation zero.  

 

(4) 
1

( ) ( , )
9

n m m n   .   

 

(.) is the profit discounted to year zero and is a strictly concave and quadratic function of h . The “net price”, 

(.)P , price minus variable costs per unit, is given in (5). Fix costs do not affect the optimal solutions and are not 

included in the model. 

 

(5) ( , ) 30 ( 5)P h m m h     

 

This means that the net price is negatively affected by the production level. When the market state is 5, the “normal 

market state”, the net price function is 30 h . If the market state is higher or lower, the net price functions moves up 

or down.  

 
Figure 2: Stochastic dynamic programming via backward recursion and the sample problem 



9th International Iranian Operation Research conference 

27 April-29 April 

 

 

 

          

Shiraz University of  
technology 

Iranian Operation 
Research Society  

 

3- Results 

 

The results found in Tables 1, 2, 3 and 4 are based on the numerical specifications found in Figures 1 and 2.  

Table 1 shows the optimal market and reserve level dependent extraction levels hopt(.)  in period 0. We find that the 

optimal extraction level is an increasing function of the market state and of the size of the remaining reserve.  

 
 

Table 1 – Optimal extraction table for t = 0. 

 

 
 

 

Table 2 includes the optimal objective function values, the expected present values, f(.), in period 0. The optimal 

expected present value is an increasing function of the market state and of the size of the remaining reserve.  
 

 
 

Table 2 – Optimal expected present value table for t = 0. 

 

 
 

Table 3 contains similar information as Table 1. However, in Table 3, we have reached period 5. The general 

tendencies are the same in period 0 and period 5, but in period 5 we should extract more of the resource than in  

period 0, in case the market state and the reserve level are the same. This is understandable, since in period 5, the 

number of remaining periods is lower. Hence, the probability that we will be able to sell the resource at a much higher 

price in the future is reduced. Furthermore, if we plan to strongly increase extraction in the near future, this will reduce 

the price level very much. For these reasons, it is better to extract more of the resource in period 5, even if the prices 

are not very good and even if we have not a very large remaining resource.     
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Table 3 – Optimal extraction table for t = 5. 

 

 
 
 

Table 4 corresponds to Table 2, but we have now reached period 5. The optimal expected present values are still 

increasing functions of the market state and the size of the remaining reserve, but all values are lower than the 

corresponding values in period 0. There are several reasons for this: Discounting during five years reduces all profits. 

Furthermore, since a lower number of periods remain, the number of options to extract during very good market states 

has decreased. Finally, the remaining reserve has to be distributed over a lower number of periods, which gives more 

negative effects on the price level.    

 

 
 

Table 4 – Optimal expected present value table for t = 5. 

 

 
 

 

In the numerical sample problem presented and analysed in this paper, the profit function is a quadratic and concave 

function of the control, the extraction level. Hence, the marginal profit function is a linear function of the extraction 

level. In such cases, increasing risk in the future market prices usually do not influence the optimal present extraction 

levels in problems of this nature, as long as the optimal production level is always strictly positive. If the marginal 

profit function is strictly concave, however, the optimal present extraction level is a strictly increasing function of the 

future risk level. If the marginal profit function is strictly convex, the optimal present extraction level is a strictly 

decreasing function of the future risk level. If the marginal profit function is strictly concave, the optimal expected 

present value is a strictly decreasing function of the future risk level. If the marginal profit function is strictly convex, 

the optimal expected present value is a strictly increasing function of the future risk level. These results have been 

proved and shown by Lohmander [2] and [4], via comparative statics analysis in stochastic dynamic programming. A 

more detailed version of this type of analysis is found in [3]. Lohmander [15] and [16] contain similar proofs based on 

an alternative method.  
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4- Conclusion 

 

Stochastic dynamic programming is a fantastic method that can be used in many highly relevant problems, in 

particular with stochastic market prices and adaptive production decisions. A common opinion is however that the 

“curse of dimensionality” makes it impossible to handle relevant real world problems with this method. For this 

reason, several attempts have been made to develop alternative approaches. In the light of this situation, the author 

suggests the use of stochastic dynamic programming as a master problem combined with linear programming 

solutions to optimal decisions at each stage and state. This makes it possible to keep the real stochastic structure of the 

problem and to optimize the relevant adaptive production level decisions. At the same time, any level of detail can be 

handled in the many production and logistics oriented decisions at lower levels. These approaches are found here: 

Lohmander [5] and [9]. Observe that linear programming can be replaced by quadratic programming as local solution 

provider in the different states and stages. Then, globally optimal solutions to large scale problems with quadratic 

objective functions can be derived in a finite number of iterations.  
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