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Fundamental Principles of Optimal Continuous Cover Forestry

• Introduction

• Simple analytical method to optimize the stock level in continuous 
cover forestry.

• More advanced analytical method to simultaneously optimize the 
stock level after harvest and the harvest interval. General aspects on 
optimal CCF, forest regulations and environmental issues.

• Advanced method to optimize CCF at the individual tree level, 
considering spatial competition, stochastic prices and timber quality 
variations. 
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CCF in Neuchatel, Switzerland



4CCF in Neuchatel, Switzerland and Professor J.P. Shütz, ETH.



5Rotation forestry with clear cuts in Sweden (10 km S Umeå).
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with different methods, including different versions 

of stochastic dynamic programming. 

Lohmander, P., Optimal sequential forestry decisions 

under risk, Annals of Operations Research, Vol. 95, pp. 

217-228, 2000

Lohmander, P., Adaptive Optimization of Forest 

Management in a Stochastic World, in Weintraub A. et 

al (Editors), Handbook of Operations Research in Natural 

Resources, Springer, Springer Science, International 

Series in Operations Research and Management 

Science, New York, USA, pp 525-544, 2007



7

Lohmander, P., Mohammadi, S., Optimal Continuous Cover Forest 

Management in an Uneven-Aged Forest in the North of Iran, Journal of 

Applied Sciences 8(11), 2008

Schütz, J-P., Modelling the demographic sustainability of pure beech 

plenter forests in Eastern Germany, Ann. For. Sci. 63 (2006) 93–100



Fundamental Principles of Optimal Continuous Cover Forestry

• Introduction

• Simple analytical method to optimize the stock level in continuous 
cover forestry.

• More advanced analytical method to simultaneously optimize the 
stock level after harvest and the harvest interval. General aspects on 
optimal CCF, forest regulations and environmental issues.

• Advanced method to optimize CCF at the individual tree level, 
considering spatial competition, stochastic prices and timber quality 
variations. 

8



Simple analytical method to optimize the 

stock level in continuous cover forestry:

9

Determination of the optimal initial 

harvest and the stock level after the 

initial  harvest.
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We start with the stock level V0.

After the initial harvest, h, we have the 

stock level V1 ( = V0-h). 

Our objective function is the total present 

value (*).

* = The sum of all revenues minus costs, at 

all points in time, with consideration of the 

rate of interest in the capital market.
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This is a growth function example:

2( ) 0.0540 0.000130G V V V 

V = Stock level (m3 per hectare) 

G(V) = Growth (m3 per hectare and year)
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Maximization of , the total present value :

0 1 0

0

max ( ) rt

h
p h p G V h e dt



   
V0 = Initial stock level (m3 per hectare).

p0 = Net price per cubic metre (price minus cost per m3) in the initial harvest.

p1 = Net price per cubic metre (price minus cost per m3) in future harvests.

h = Initial harvest (m3 per hectare).

V0-h = Stock level after the initial harvest (m3 per hectare).

G(V0-h) = Growth (m3/year) after the initial harvest.

(Note that the future harvest level is identical to the future growth.)

r = Rate of interest in the capital market.


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0 1 0

0

max ( ) rt

h
p h p G V h e dt



   

0 1 0

1
max ( )

h
p h p G V h

r
   

0 1 0

0

max ( ) rt

h
p h p G V h e dt



    
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Optimization of the initial harvest, h, (and 

indirectly of the optimal stock level after the 

initial harvest), V0-h, via derivatives:

0 1 0

1
max ( )

h
p h p G V h

r
   
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0 1 0

1
'( ) 0

d
p p G V h

dh r


   

2

1 02

1
''( ) 0

d
p G V h

dh r


  
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0 1 0

0
0

1

1
0 '( )

'( )

d
p p G V h

dh r

p
G V h r

p

   
      

   

 
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The optimal stock level after the initial harvest, 

V1, can be determined from this equation.

(Then, the optimal initial harvest level, h, is 

determined from V1=V0-h. h=V0-V1.) 

0
1 0

1

'( ) '( )
p

G V G V h r
p

  
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EXAMPLE: Optimization with specific

parameters and a graphical approach:

0 1 0

1
max ( )

h
p h p G V h

r
   

Initial stock level = 130 m3/ha.

p0 = p1 = 200 SEK/m3. 

r = 3%.

Estimated growth function: G = 0.054011123·V - 0.000129731·V·V
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Present value (SEK/ha)

h (m3/ha)
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Present value (SEK/ha)

V1=V0-h (m3/ha)
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Illustration via an estimated growth function:

2( ) 0.0540 0.000130G V V V 

G(V)

V
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Growth function derivatives:

2( ) 0.0540 0.000130

'( ) 0.0540 0.000260

''( ) 0.000260 0

G V V V

G V V

G V

 

 

  
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'( ) 0.0540 0.000260G V V 

V
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Determinaion of the optimal stock level:

0

1

0

1

'( )

0.0540 0.000260

p
G V r

p

p
V r

p



 
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'( ) 0.0540 0.000260G V V 

V

0

1

3%
p

r
p



92.3



Conclusion:

The optimal stock level is 92.3 m3 per hectare

if the rate of interst is 3% in this case.
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We can also determine an equation

for the optimal stock level.
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0

1

0

1

0

1

0.0540 0.000260

0.0540

0.000260

207.7 3846

p
V r

p

p
r

p
V

p
V r

p

 

 




 
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0

1

207.7 3846
p

V r
p

 

0

1

p
r

p

Here, we have an expression 

for the optimal stock level

as a function of the rate of interest

and the net prices.
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General principles of rational continuous cover 

forestry derived from the simple analytical method:

1. The optimal stock level is a decreasing function of the rate of interest.

2. The optimal stock level decreases if the net price per cubic metre in the initial 

harvest increases in relation to the net price per cubic metre in future harvests.

3. The optimal stock level increases if the net price per cubic metre in the initial 

harvest decreases in relation to the net price per cubic metre in future harvests.

4. It is optimal to let the stock level be equal to the stock level that maximizes the 

average growth (MSY) only if the rate of interest in the capital market is zero.



Fundamental Principles of Optimal Continuous Cover Forestry

• Introduction

• Simple analytical method to optimize the stock level in continuous 
cover forestry.

• More advanced analytical method to simultaneously optimize the 
stock level after harvest and the harvest interval. General aspects 
on optimal CCF, forest regulations and environmental issues.

• Advanced method to optimize CCF at the individual tree level, 
considering spatial competition, stochastic prices and timber quality 
variations. 
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Optimal continuous cover forest management:
- Economic and environmental effects and legal 

considerations

Professor Dr Peter Lohmander 
http://www.Lohmander.com

Peter@Lohmander.com

BIT's 5th Low Carbon Earth Summit 
(LCES 2015 & ICE-2015) 

Theme:  "Take Actions for Rebuilding a Clean World"

September 24-26, 2015

Venue: Xi'an, China
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Optimal forest management
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Forest management can be performed in many 
different ways.

Decisions in forestry affect economic results, 
the flow of bioenergy raw materials, the CO2 
balance of the world, species diversity, 
recreation options for humans and much more.
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Some of the fundamental decision problems concern: 

Continuous Cover Forestry (CCF) or Plantation Forestry (PF),

the Stand Density (SD),

the Harvest Interval (HI),

Single Species Forestry (SSF) or Multi Species Forestry (MSF). 
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With present prices, costs, technology and initial forest 
conditions in many dominating forest countries, CCF is 
often a better choice than PF when we optimize the 
economic present values.

CCF is also a better choice than PF from several 
environmental perspectives.

The optimal levels of SD and HI are affected by all 
parameters. 
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MSF can give environmental benefits in relation to SSF. 

MSF can also give economically valuable options to sequentially 
adjust forest production to future market changes. 

MSF is less sensitive to species specific damages and is more flexible 
to changing environmental conditions.

Therefore, the expected present value of MSF is often higher than the 
expected present value of SSF. 
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Similar countries
with very different forest laws
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The forest laws in different countries, also neighbour
countries such as Finland and Sweden, with almost the same 
prices, costs, technology and forest conditions, are very 
different with respect to the fundamental decisions: CCF or 
PF, SD, HI and SSF or MSF. 

The economic and environmental development of the world 
would benefit from more rational forest management. 

Several forest laws need to be adjusted in order to make 
rational decisions legal.
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1 1( , ) ( , )
max ( )

1rt

P v t Q v t c
R h

e



 



0 1

. .s t

h v v 

time

v = volume per hectare

0

0

v0

v1

t

h = The first harvest volume

R(h) = Profit from the first harvest

P(.)    = Price per cubic metre

(reduced by variable cost per

cubic metre) 

in future harvests

Q(.)    = Harvest volume per hectare

in future harvests

c = Set up cost per harvest

occation

r = Rate of interest

Present value
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time

v = volume per hectare

0

0

v0

v1

t

In Finland, continuous cover forest management can be optimized without constraints.

In Sweden, there are several constraints in the forest act. For instance, the volume always has to stay above
a specified lower limit. If the volume is below the limit, you have to make a clearcut.

WITH Swedish constraints, forestry with clearcuts often is the economically optimal choice.
WITHOUT Swedish constraints, continuous cover forestry is very often the economically optimal choice.
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1 1( , ) ( , )
max ( )

1rt

P v t Q v t c
R h

e



 



0 1

. .s t

h v v 
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Example:

Graphical

illustrations

based on 

specified

functions

and 

parameters
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t
v1

Present

value
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Present
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Present
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t
v1
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Present

value

t

v1
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The optimal 

value of V1 

is far below

the Swedish 

constraint.

Maximum 

present

value

Optimal 

harvest

interval



Optimal continuous cover 
forest management

First, we study:

One dimensional optimization in
the time interval dimension 

(of relevance when the stock level
after harvest is determined by law 

or can not be determined 
for some other reason)
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1 1( , ) ( , )
max ( )

1rt

P v t Q v t c
R h

e



 



0 1

. .s t

h v v 
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 
   2
1 0

1

rt
rt

rt

d e dP dQ
Q P e PQ c r

dt dt dte

   
       

  

   1 0rtdP dQ
Q P e PQ c r

dt dt

 
     

 

 (.) 0M  



Optimal principle in the time dimension:
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 
1

rt

rt

dP dQ
Q P

dt dt r
c e PQ

PQ
e




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How is the optimal time interval affected if the 
parameter c marginally increases (ceteres
paribus)? 
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0
d

dt




2 2
*

2
0

d d d
d dt dc

dt dt dtdc

   
   

 
2

*

2

2

d

dtdcdt

dc d

dt





 
 
 
 
 
 



A unique maximum is assumed in the time interval dimension
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2

2
0

d

dt




2

(.) 0
d

k r
dtdc


  2

*

2

2

0

d

dtdcdt

dc d

dt





 
 
  
 
 
 

Conclusion:

The optimal time interval 

is a strictly increasing 

function of c.



How is the optimal time interval affected if the 
parameter r marginally increases (ceteres paribus)? 
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2

*

2

2

0

d

dtdrdt

dr d

dt





 
 
  
 
 
 

Conclusion:

The optimal time interval is 

a strictly decreasing function

of the parameter r.



How is the optimal time interval affected if the future 
prices marginally increase (ceteres paribus)? 
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1( , )
max ( )

1rt

pQ v t c
R h

e



 


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2

*

2

2

0

d

dtdpdt

dp d

dt





 
 
  
 
 
 

Conclusion:

The optimal time interval is a 

strictly decreasing function of the 

parameter p.



Optimal continuous cover 
forest management

Now, we study:

One dimensional optimization in
the volume dimension 

(of relevance when the time interval 
is determined by law 

or can not be determined 
for some other reason)
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1 1( , ) ( , )
max ( )

1rt

P v t Q v t c
R h

e



 



0 1

. .s t

h v v 
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1 1 1 1

1
(.) 0

1rt

d dR dh dP dQ
Q P

dv dh dv e dv dv

  
    

  

1

1
dh

dv
 

1 1

1
(.)

1rt

dR dP dQ
Q P

dh e dv dv

 
  

  

Optimal principle in the 

volume dimension:



How is the optimal volume affected if one

parameter marginally increases (ceteres

paribus)? 

- The optimal volume is not affected by changes of c.

- The optimal volume is a strictly decreasing function of r.

- The optimal volume is a strictly increasing function of p.
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Observation:

• If the volume is constrained (by law or something else), we may study
the effects of the volume constraint on the optimal time interval, via 
one dimensional optimization.
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2

1

0
d

dv dt


 2

*
1

2
1

2

0

d

dtdvdt

dv d

dt





 
 
  
 
 
 



Observation (extended):

• If the time interval is constrained (by law or something else), we may
study the effects of the time interval constraint on the volume, via one
dimensional optimization.
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*
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2

2

1

0

d

dv dtdv

dt d

dv





 
 
  
 
 
 

2

1

0
d

dv dt






Optimal continuous cover 
forest management

Now, we study:

Two dimensional optimization in the volume AND 
time interval dimensions 
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1( , )
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1rt

pQ v t c
R h

e
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
 



0 1
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The first order optimum conditions:
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Assumption: A unique maximum exists. The 

following conditions hold:
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2 2
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1 1

2 2 2 2
1

2

1

0, 0, 0

d d

dv dv dtd d

dv dt d d
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 

 

 
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2 2

2 2 2 2 2
1 1

2 22 2
1 1 1

2

1

0 0

d d

dv dv dt d d d d
D

dv dt dtdv dv dtd d

dtdv dt

 

   

 

 
 
     
 
 
 
 

2
2 2 2 2 2

2 2

1 1 1 1

d d d d d

dv dt dtdv dv dt dv dt

     
   

 



Comparative statics analysis based on two

dimensional optimization:
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2 2 2 2 2

2 *
1 1 1 1 11
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   
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Conclusions:

The forest laws in different countries, also neighbour countries such as Finland and 
Sweden, with almost the same prices, costs, technology and forest conditions, are very 
different. 

If constraints that make continuous cover forest management less profitable than clear 
cut forestry are removed, we can expect better economic results and environmental 
improvements.

The analyses have shown how optimal decisions in forestry can be determined and how 
these optimal decisions are affected by parameter changes.

Several laws need to be adjusted in order to make rational forestry decisions legal.

The economic and environmental development of the world would benefit from more 
rational forest management. 
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There is a mathematical
appendix available that contains

all of the derivations.
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Fundamental Principles of Optimal Continuous Cover Forestry

• Introduction

• Simple analytical method to optimize the stock level in continuous 
cover forestry.

• More advanced analytical method to simultaneously optimize the 
stock level after harvest and the harvest interval. General aspects on 
optimal CCF, forest regulations and environmental issues.

• Advanced method to optimize CCF at the individual tree level, 
considering spatial competition, stochastic prices and timber quality 
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The ambition of this study is to develop 

a general method for optimization of stochastic and 

dynamic decision problems 

with spatial dependencies that cannot be neglected and 

where the need to use a multidimensional state space in 

high resolution 

makes it computationally and economically impossible 

to apply the otherwise relevant method stochastic 
dynamic programming. 
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Applications can be found in most sectors of the 

economies. 

One of the most obvious cases, where useful and 

statistically estimated functions already exist, is 

the forest sector. 

We start with a forest area with 1000 trees of 

different sizes, as shown in Figure 1. 

The initial locations and sizes of the trees are 
simulated. 
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Figure 1:

Spatial map of initial 

conditions at t = -1 

(years from the present 

time). 

The locations of the 

circle centers are the 

locations of the trees. 

The circle diameters are 

proportional to the tree 

diameters. 

The square represents 

one hectare 

(100m*100m). 



86

The problem is to determine an adaptive control function 

to be used in this forest, 

giving the maximum of the total expected present value 

of all activities over time. 
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The annual increment of each tree is a function of 

tree size and competition from neighbor trees. 

The different trees have different wood qualities, 

initially randomly assigned to the individuals. 

The market value of a tree is a function of size, 

quality and stochastic price variations. 

The variable harvesting cost of a tree is size 
dependent. 
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Every five years, the trees in the forest are 

inspected. 

Then, depending on market prices, tree sizes, 

competition, quality etc., it is possible that some or 

many trees are harvested. 

The optimized control function is used to make all 

of these decisions. 

Figure 2 shows the structure of the forest directly 
after optimal harvesting at t = 0. 
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Figure 2:

The state after the 

first application of the 

optimized control 

function at t = 0. 

Most of the largest 

trees have been 

removed. 
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Obviously, a considerable number of large trees 

have been removed. 

Many new seedlings are however found on the 

land, in random positions.

The trees continue to grow and Figure 3 
illustrates the situation 35 years later. 
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Figure 3: 

The forest at t = 35.
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Figure 4:

The forest at t = 69.

69 years after the first 

harvest, trees of 

considerable sizes 

exist (Figure 4). 

The total number of 

large trees in year 69 

is however much 

lower than before the 
harvest during year 0.
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Figure 5: 

The forest at t = 70.

Several large trees 

are harvested in 

year 70 
(Figure 5). 
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This type of stochastic dynamic and spatial forest 

development is sustainable. Furthermore, there are always 

trees in the forest. We have a system of “optimal continuous 

cover forestry”. 

Lohmander [1] describes several alternative methods to optimize 
forest management decisions at higher levels. 

[1] Lohmander, P., Adaptive Optimization of Forest 

Management in a Stochastic World, in Weintraub A. et al 

(Editors), Handbook of Operations Research in Natural 

Resources, Springer, Springer Science, International Series in 

Operations Research and Management Science, New York, USA, 

pp 525-544, 2007
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Lohmander and Mohammadi [2] determine optimal 

harvest levels in beech forests in Iran, using 

stochastic dynamic programming. 

Then, however, the tree selection decisions were 

never analyzed.

[2] Lohmander, P., Mohammadi, S., Optimal 

Continuous Cover Forest Management in an 

Uneven-Aged Forest in the North of Iran, Journal of 

Applied Sciences 8(11), 2008
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2 Analysis 

 
              The optimal decisions for each tree, i, at time t, is determined by the diameter 

limit function ( , )Ld i t . If the diameter is larger than the diameter limit, then the tree 

should be harvested. Otherwise, it should be left for continued production. 

0( , ) ( ) ( ) ( )L c q pd i t d d C i d Q i d P t    
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The parameters 

 0 , , ,c q pd d d d

are optimized in this study. In the graphs and 

software, they are denoted 

(dlim_0, dlim_c, dlim_q and dlim_p).



98

 ( ), ( ), ( )C i Q i P t

denote competition index for tree i, 

quality of tree i and 

the stochastic deviation of the market price from the 

expected price, at time t. 

The stochastic price deviations are i.i.d. and have 

uniform pdf on the interval -10 to +10 EURO/cubic 
metre.
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Lohmander, P., Reservation price models in forest 

management: Errors in the estimation of probability density 

function parameters and optimal adjustment of the biasfree 

point estimates, Management Systems for a Global Forest 

Economy with Global Resource Concerns, Society of American 

Foresters, Asilomar, California, September 1994, Brodie, D. & 

Sessions, J., (Editors), College of Forestry, Oregon State 

University, Corvallis, Oregon, USA, 439-456, 1995

http://www.Lohmander.com/Lohmander_SAF_1995.pdf

20 EURO
interval

http://www.lohmander.com/Lohmander_SAF_1995.pdf
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The objective function is the 

total expected present value of all revenues minus 

all costs from year 0 until year 200. 

The real rate of interest is set to 3%. 

The computer model includes functions for 

tree height as a function of diameter, 

functions used in tree volume calculations, 

set up costs, 

tree size dependent revenues and variable 

harvesting costs etc.   
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The trees grow according to a modified version of the function 

reported by Schütz [3]. 

The modification is that in [3], competition is assumed to come 

from all parts of the forest area, also far away from the individual 

tree. 

In the function applied in this new analysis, only competition 
from trees at distances ten meters or closer, is considered. 

[3] Schütz, J-P., Modelling the demographic sustainability of pure beech 

plenter forests in Eastern Germany, Ann. For. Sci. 63 (2006) 93–100
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Furthermore, in the Schütz function, each tree is only affected by 

competition from trees with larger diameters. 

In the present study, also competition from trees with smaller 

diameters is considered.

However, it is probably the case that trees with smaller diameter 

give a lower degree of competition. 

The motivation for the new function, used here, is that 

competition for light, water and nutrients, obviously is 

stronger from neighbor trees than from trees far away. 

Furthermore, also smaller trees use some of the available 
light, water and nutrients. 
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 
3

0 1 2( ) ( ( )) ( )I i b b LN d i b C i  

( )I i

( )d i

 0 1 2, ,b b b

is the diameter increment of tree i and

is the diameter.

is a set of empirically estimated parameters, published 
by Schütz [3], for beech in Germany.

( )C i is now expressed as the basal area per hectare of larger competing 

trees plus the basal area of smaller competing trees divided by 2 (all 

within the 10 meter radius circle). In future studies, the competition 

function should be estimated with locally relevant data. 
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The optimization of the total expected present value, 

via the parameters of the adaptive control function, 

contained the following steps: 

A software code was constructed and tested in QB64. 

The objective function was estimated for a set of 

combinations of the control function parameters

 0 , , ,c q pd d d d
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For this purpose, a four dimensional loop with alternative 

parameter values was run. 

Preliminary iterative studies were first made to determine 

interesting parameter intervals. 

Then, a 3*3*3*4 loop was used, which gave 108 parameter 

combinations. 

For each parameter combination, the total expected present 

value during 200 years was estimated for 10 different forest 

areas of one hectare, each with 1000 initial random trees. 
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That analysis took approximately 8 hours on 

an Acer Aspire V personal computer with an 

Intel Core i5 processor. 

Next, the parameter values of  ,c qd d

determined in the “108-loop”, were considered 

optimal and fixed. A more detailed analysis, 
with higher resolution, of the parameters 

 0 , pd d was made.
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3 Main Results

The adaptive control function parameters

were determined in a general loop. 

108 combinations were evaluated.

This is the adaptive control function:

 0 , , ,c q pd d d d

, ( , ) 0.60 0.0030 ( ) 0.020 ( ) 0.020 ( )L ad i t C i Q i P t    
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, ( , ) 0.60 0.0030 ( ) 0.020 ( ) 0.020 ( )L ad i t C i Q i P t    

The optimal objective function value was estimated to 

2571 EURO/hectare. 

This is the optimal adaptive control function:
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Next, the parameter values of    , 0.003, 0.020c qd d  

determined in the “108-loop”, were considered optimal and fixed.

A more detailed analysis, with higher resolution, of the parameters

 0 , pd d = (dlim_0, dlim_p) was made. 

Figure 6 shows the objective function and in Figure 7, the 

objective function level curves are given. 
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Figure 6: 

The objective 

function reduced by 

a constant 

as a function of the 

parameters 

dlim_0 and dlim_p,

for optimal values of 

the other 

parameters, namely 

dlim_c = -0.003 and 

dlim_q = 0.02.



111

Figure 7: 

The level curves of 

the objective 

function as a 

function of the 

parameters dlim_0 

and dlim_p, 

when the other 

parameters were 

held constant at their 

optimal values. 



112

Multiple regression analysis 

and the data presented in Figure 6 were used to estimate a 

quadratic approximation of the objective function, Z. 

Let (x, y) =  0 , pd d

2 28694x + 22248y 8170x 235019 65389Z y xy   

The R2 value of the regression was 0.999 and all coefficients were

statistically significant, with p-values below 0.00003.
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2 28694x + 22248y 8170x 235019 65389Z y xy   

Approximation of the objective function, Z

The first order optimum conditions are:

16340 65389 8694 0
dZ

x y
dx

    

65389 470038 22248 0
dZ

x y
dy

    



114

The equation system 

16340 65389 8694

65389 470038 22248

x

y

       
     

       

gives this unique solution:    , 0.773, 0.0602x y  

Now, the objective function value is 2690 EURO/hectare.
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The derived optimum is a unique maximum, which is confirmed by:

16340 16340 0   

and

9
16340 65389

3.405 10 0
65389 470038

 
  

 
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The quadratic approximation gave this optimal control function:

, ( , ) 0.773 0.0030 ( ) 0.020 ( ) 0.0602 ( )L bd i t C i Q i P t    
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Figure 8: 

The objective 

function as a 

function of the 

parameters dlim_0 

and dlim_p, 

according to the 

quadratic 

approximation, 

when the other 

parameters were held 

constant at their 

optimal values. 
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The quadratic approximation gave this optimal control function:

, ( , ) 0.773 0.0030 ( ) 0.020 ( ) 0.0602 ( )L bd i t C i Q i P t    

Three General Forest Management Conclusions:

A tree should be harvested at a smaller tree diameter, in case the 
local competition from other trees increases.

A tree should be harvested at a larger tree diameter, in case the 
wood quality of the tree increases.

A tree should be harvested at a smaller tree diameter, in case the 
market net price (price – harvesting cost) for wood increases.



FINAL CONCLUSIONS

• The general principles of optimal continuous cover forestry
have been derived and presented.

• General analytical solutions have been obtained for the 
optimal stock level and the optimal harvest time interval, 
via stand level optimization.

• Optimal CCF rules for decisions concerning individual trees
have been derived via numerical optimization of adaptive 
control functions. These rules handle tree dimension, 
timber quality, spatial distribution, local competition and 
stochastic prices.
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