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Optimal stochastic control in continuous time with Wiener processes: 
- General results and applications to optimal wildlife management

Peter Lohmander

Abstract
This paper presents a stochastic optimal control approach to wildlife 
management. The objective value is the present value of hunting and meat, 
reduced by the present value of the costs of plant damages and traffic 
accidents caused by the wildlife population. First, general optimal control 
functions and value functions are derived. Then, numerically specified 
optimal control functions and value functions of relevance to moose 
management in Sweden are calculated and presented. 
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• Relevant parts of general stochastic optimal

control theory

• Derivation of general function solutions to the

optimal wildlife management problem

• Specific derivations and results of relevance to

optimal moose management in Sweden



4

The General Stochastic Optimal Control Problem

Related introductions with more details are found in 
Sethi and Thompson [1], 
Malliaris and Brock [2] 
and Winston [3]. 

Lohmander [4] presents connected methods in discrete time.
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We want to maximize the objective function

0

( , , ) ( , )

T

t t tE F X U t dt S X T
 

 
 


tX is the state variable,

tU is the closed loop control variable and 

tz is a standard Wiener process.
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0 0( , , ) ( , , ) ,t t t t t tdX f X U t dt G X U t dz X x  

According to the Bellman principle of optimality, we may

determine the value function

( , )V x t

as the maximum of the sum of the net reward during the 

first short time interval,

(.)F dt

and the value function directly after that time interval.
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 ( , ) max ( , , ) ( , )t
u

V x t E F x u t dt V x dX t dt   

A Taylor function approximation gives:

 
2 2( )

( , ) ( , ) ( )( ) (.)
2 2

xx t tt
t x t t xt t

V dX V dt
V x dX t dt V x t V dX V dt V dX dt         

In the Taylor function, we need: 

   
2 22 2 22 ( )( ) ( )t t tdX f dt fG dt dz G dz   and

2( ) ( )( )t tdX dt f dt G dt dz 
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Stochastic calculus tells us: 

2 2( ) 0, ( )( ) 0, ( )t tdt dt dz dz dt  

Hence, we get: 

 
2 2

tdX G dt and 0tdX dt 

Furthermore,

( ) 0tE dz 
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As a result, we get:

2

( , ) ( , ) (.)
2

xx
t x t

V G
V x dX t dt V x t V fdt V dt dt       

Hence, the value function is approximately:

2

max (.)
2

xx
x t

u

V G
V E Fdt V V fdt V dt dt 

 
      

 

2
(.)

0 max
2

xx
x t

u

V G
E F V f V dt

dt

  
      

  



Let 0dt 
(.)

0.
dt
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0 max
2

xx
x t

u

V G
E F V f V
 

    
 

Since
tV is not a function of u, we obtain the ”Hamilton-Jacobi-Bellman equation”:

2

max
2

xx
t x

u

V G
V E F V f

 
    

 

with boundary condition:    , ,V x T S x T
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The particular stochastic optimization problem:

We want to maximize the expected present value of wildlife 

management. 

( )u u t is the control variable, the level of hunting at time t.

( )x x t is the size of the wildlife population. 

( , , )k p f are objective function parameters. 

The net revenue of the hunting and meat values, 

2ku pu , is a strictly concave function of the hunting level.
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fx , which is proportional to the population level, ,x

is the cost of destroyed forest plantations and cost of traffic accidents caused by 

the wildlife population. 

The population growth increases with the size of the population and decreases

with the hunting level. 

The magnitudes of the stochastic population changes depend on the standard 

Wiener process, ,z the size of the population, and the risk parameter , .s

r is the rate of interest in the capital market.
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2

0

max ( )

. . ( )

0, 0, 0, 0

rtE e ku pu fx dt

s t dx gx u dt sx dz

k p f s
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The net profit at a particular point in time is: 

2( , ) ( )R u x ku pu fx  

The ”Hamilton-Jacobi-Bellman equation” becomes:

2 2 ( , )
( , ) ( ( ), ( )) ( , )( ( ) ( ))

2

rt xx
t x

s x J x t
J x t e R u t x t J x t gx t u t    

( , )J x tHere, let denote “Value function”.
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Now, the problem is to:

Determine the value function and the control function

that satisfy the Hamilton-Jacobi-Bellman equation. 

Let us assume that the value function can be expressed this way: 

2( ( ), ) ( ) ( )rt rtJ x t t e V x e a bx cx    

2( )V x a bx cx  

One part of the value function is now:
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Then, these partial derivatives can be calculated:

( ( ), ) ( 2 )rt

xJ x t t e b cx 

( ( ), ) (2 )rt

xxJ x t t e c

2( ( ), ) ( )rt

tJ x t t re a bx cx  

As a result, we can rewrite the Hamilton-Jacobi-Bellman equation:

2 2 ( )
( ) ( , ) ( )( )

2

xx
x

s x V x
rV x R u x V x gx u   
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2 2 2 21
( ) ( ) 2 ( 2 )( )

2
r a bx cx ku pu fx s x c b cx gx u        

We have to optimize the control, u.

2 2 21
max ( ) ( ) 2 ( 2 )( )

2u
Z u ku pu fx s x c b cx gx u      

The first order optimum condition and the second order maximum condition are:

( )
2 2 0

dZ u
k pu b cx

du
    

2

2

( )
2 0

d Z u
p

du
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The derived value of u is a unique maximum
*.u

*( ) 2
0

2

dZ u k b cx
u u

du p

   
     

   

* * * * 2 2 2 *1
( ) ( ( ) ) 2 ( 2 )( )

2
Z Z u ku p u fx s x c b cx gx u       
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* * * 2 2 2 21
( 2 ) ( ) 2 2

2
Z k b cx u p u fx s x c bgx cgx       

Using the optimal values of the control, via the optimized control function, we get:

2

* 2 2 22 2 1
( 2 ) 2 2

2 2 2

k b cx k b cx
Z k b cx p fx s x c bgx cgx

p p

      
          

   

We can rewrite the Hamilton-Jacobi-Bellman equation:

2 2
* *( )

( ) ( , ) ( )( )
2

xx
x

s x V x
rV x R u x V x gx u   
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2 * * 2 2 2 *1
( ) ( ( ) ) 2 ( 2 )( )

2
r a bx cx ku p u fx s x c b cx gx u        

2

2 2 2 22 2 1
( ) ( 2 ) 2 2

2 2 2

k b cx k b cx
r a bx cx k b cx p fx s x c bgx cgx

p p

      
            

   

   
2 22 2 2 21 1 1

2 2 2 2
2 4 2

ra rbx rcx k b cx k b cx fx s x c bgx cgx
p p

           

 
22 2 2 21 1

2 2 2
4 2

ra rbx rcx k b cx fx s x c bgx cgx
p
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2 2 2 2 2 2 2 21 1
( 4 2 4 4 ) 2 2

4 2
ra rbx rcx k b c x bk ckx bcx fx s x c bgx cgx

p
           

2 2 2 2 2 2 2 21
( 2 4 4 4 ) 2

4
ra rbx rcx k b bk ckx bcx c x fx cs x bgx cgx

p
           

2 2 2
2 2 2 2 22 ( )

2
4

k b bk c b k c
ra rbx rcx x x fx cs x bgx cgx

p p p
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Now, we have obtained a quadratic function, that always has to be zero. 

If the function is not zero, then the Hamilton-Jacobi-Bellman equation is violated.

Since the function must hold for all possible values of ,x

the size of the population, it is clear that we have three equations

that can be used to determine the parameters ( , , ).a b c

2 2 2
2 22 ( )

0 2
4

k b bk c b k c
ra bg rb f x cs cg rc x

p p p
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2
2 20 2 , 0

c
cs cg rc x x

p

  
       
  

2
2 2 22 0 2 0 ( 2 )

c c
cs cg rc s g r c p r g s

p p
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( )
0 , 0

c b k
bg rb f x x

p

  
       
  

( )
0 0

( )

c b k c ck
bg rb f g r b f

p p p

ck
f

ck pfp
b b

c c p g r
g r

p
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Now, we can use the newly derived function for c in the expression for .b

2

2

( 2 )

( 2 ) ( )

p r g s k pf
b

p r g s p g r

  
 

   

2

2

( 2 )

( 2 ) ( )

r g s k f
b

r g s g r

  
 

   

2

2

( 2 )r g s k f
b

g s

  
 

 

2

2

(2 )
.

k g r s f
b

g s
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2 2 2
0

4

k b bk
ra

p

   
    
  

2 2 2
0

4

k b bk
ra

p

 
 

2 2 2 4k b bk pra  

2( ) 4k b pra 

2( )

4

k b
a

pr
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Now, the expression for b can be used in the expression for .a

2
2

2

(2 )

4

k g r s f
k

g s
a

pr

   
 

  
 

2
2 2

2 2

( ) (2 )

4 ( )

k g s k g r s f
a

pr g s

    
 



 
2

2 2

2 2

2

4 ( )

f kg ks kg kr ks
a

pr g s

    
 

  
2

2 2

( )
.

4 ( )

f k g r
a

pr g s
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Now, we know the parameters of the value function.

They are explicit functions of the parameters in the initially specified

optimization problem.

2( )V x a bx cx  

 
2 2

2 2

2 2 2

( ) (2 )
( ) ( 2 )

4 ( )

f k g r k g r s f
V x x p r g s x

pr g s g s
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Now, we will do the same for the optimal control function.

What are the control function parameters?

* 2

2

k b cx
u

p

  
  
 

First, we introduce the functions of b and c in the expression for 
*.u

2
2

2

*

(2 )
2 ( 2 )

2

k g r s f
k p r g s x

g s
u

p
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2 2
2

2 2

* * 2

2

2 2 2
* 2 * 2

2

*

(2 ) (2 )
2 (2 )

(2 )
2 2

(2 )

( ) ( (2 ) )
(2 ) (2 )

2 2 ( )

k g r s f k g r s f
k p g r s x k

g s g s
u u g r s x

p p

k g r s f
k

g s k g s k g r s f
u g r s x u g r s x

p p g s

k
u

           
          

            
   
      
   

   
 

              



2 2

2 * 2

2 2

2 ( )
(2 ) (2 )

2 ( ) 2 ( )

g ks kg kr ks f k r g f
g r s x u g r s x

p g s p g s
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* 2

2

( )
(2 )

2 ( )

k r g f
u g r s x

p g s
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The numerically specified case:

Let us enter the particular numerical parameters of a real problem.

Lohmander [5] estimated revenue and cost functions and calculated the optimal 

equilibrium moose population in Sweden, under deterministic assumptions and 

no discounting. 

The size of the moose population is however not perfectly predictable and the 

capital market often, but not always, includes strictly positive interest rates. 

Random disturbances can have large effects. 



33

Empirical Background
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Typical Forest Area in Sweden, after harvest.
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Young pine plants
often form the
new forest.
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However, young
pines are also
popular as food, 
if you are a 
moose.
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The moose
randomly walks
between different 
forest areas, 
without
boundaries, in the 
forests of Sweden.
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Typical road in Sweden.
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Moose randomly cross roads.
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Many severe car and moose collisions occur.
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The present value of the costs of car and moose
accidents is higher than the present value of
plantation damages.
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We may determine the optimal stochastic control of the moose population in 

Sweden, based on the new general functions that have been derived in this 

paper. 

The figures and functions presented in Lohmander [5] and [6] can be used to 

derive the parameters of the stochastic control problem. 

Please note that the quadratic objective function in the stochastic optimal 

control problem of this paper is an approximation of the particular objective 

function presented in [5] and [6].
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Both functions are strictly concave. The quadratic

approximation fits the original function very well within the

selected approximation region.

Of course, the derived general equations can be used also for

other animals and in other countries of the world.

These parameter values were estimated:

g = 1/3, k = 600, p = 90, f = 90. Let r = 1/30.

In Figure 1. and Figure 2., we can inspect the optimal value

function and the optimal control function.



44Figure 1. The optimal total present value function, V(.) as a function of the population density, x, and the stochastic parameter s. 



45Figure 2. The optimal control, the hunting level, u*, as a function of the population density, x, and the stochastic parameter s. 



46

Figure 1. shows that the optimal 

value function is a strictly concave 

function of the size of the 

population. 

The value is a decreasing function 

of the stochastic parameter s. 

The optimal population density, 

with respect to the value function, is 

a decreasing function of s. 

Note that the optimal population 

density, with respect to the value 

function, is not equal to the optimal 

population density in the long run.

The value may be high with a rather high 

(initial) population, since the control (= hunting 

level) initially can be high, gradually reducing 

the population to a much lower level.
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Figure 2. shows the optimal control, 

the hunting level, as a function of 

the size of the population. 

Note that the optimal control level is 

an increasing function of the 

stochastic parameter s.  

The intersections of the alternative 

control functions and the line 

representing “expected population 

growth without hunting”, show the 

population levels and the hunting 

levels where the expected values of 

the instant population changes are 

zero.

Observe that, if s increases, these “expected 

equilibria” intersections obtain lower 

population densities and lower hunting levels.
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Since the first derivatives of the alternative control functions with respect to x
are higher than the first derivative of “the expected population growth 

without hunting”, with respect to 

the ”expected equilibria” are dynamically stable.

,x
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Conclusions:
This paper has derived and presented a stochastic optimal control

approach to wildlife management.

The objective value is the net present value of hunting and meat,

reduced by the present value of the costs of plant damages and

traffic accidents caused by the wildlife population.

General optimal control functions and value functions were derived.

Then, numerically specified optimal control functions and value

functions of relevance to moose management in Sweden have been

calculated and presented.
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Thank you for listening!
Questions?
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