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Abstract

This paper presents a stochastic optimal control approach to wildlife
management. The objective value is the present value of hunting and meat,
reduced by the present value of the costs of plant damages and traffic
accidents caused by the wildlife population. First, general optimal control
functions and value functions are derived. Then, numerically specified
optimal control functions and value functions of relevance to moose
management in Sweden are calculated and presented.
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Relevant parts of general stochastic optimal
control theory

Derivation of general function solutions to the
optimal wildlife management problem

Specific derivations and results of relevance to
optimal moose management in Sweden



The General Stochastic Optimal Control Problem

Related introductions with more details are found in
Sethi and Thompson [1],

Malliaris and Brock [2]

and Winston [3].

Lohmander [4] presents connected methods in discrete time.



We want to maximize the objective function

T
E| | F(X,U,tydt+S(X,,T)
0

Xt IS the state variable,

U

¢ IS the closed loop control variable and

Zt Is a standard Wiener process.



dX, = f(X,,U,,t)dt+G(X,,U,,t)dz,, X, =X,

According to the Bellman principle of optimality, we may
determine the value function

V (X,1)

as the maximum of the sum of the net reward during the
first short time interval,

F()dt

and the value function directly after that time interval.



V(x,t) =max E|F(x,u,t)dt +V (x+dX,,t+dt)]

A Taylor function approximation gives:

2 2
V(x+dX, , t+dt) =V (xt)+V dX, +V.dt+ Vi (th ) + Ve (;jt) +V  (dX,)(dt) +o(.)
In the Taylor function, we need:
(dX,)" = f2(dt)” +2fG(dt)(dz,) + G*(dz,)? and

dX dt = f (dt)? +G(dt)(dz,)



Stochastic calculus tells us:

(dt)>=0, (dt)(dz)=0, (dz,)?=dt
Hence, we get:

(dX,)" = Gdt and  dX,dt =0

Furthermore,

E(dz,)=0



As a result, we get:

2
V (x+dX,,t+dt) =V (x,t)+V, fdt +V,dt +VXXZG dt + o(.)

Hence, the value function is approximately:

2
V =max E| Fdt+V +V fdt+V.dtA VXXZG dt+o(.)

dt

4 2 A
O=maxE|| F+V f +V A Vi | o()
u \ 2 dt y




Let dt > 0 o() > 0.
dt

O=maxE| F+V f +V, +

V. G2
2

Since Vt IS not a function of u, we obtain the »Hamilton-Jacobi-Bellman equation”:

-V, =maxE| F+V f +

V. G2
2

with boundary condition: \/ (X,T) =S (X,T)



The particular stochastic optimization problem:

We want to maximize the expected present value of wildlife
management.

U= U(t) Is the control variable, the level of hunting at time t.

X = X(’[) is the size of the wildlife population.

(K, p, f) are objective function parameters.

The net revenue of the hunting and meat values,

Ku — pu2 , Is a strictly concave function of the hunting level.

11



fX , which is proportional to the population level, X,

IS the cost of destroyed forest plantations and cost of traffic accidents caused by
the wildlife population.

The population growth increases with the size of the population and decreases
with the hunting level.

The magnitudes of the stochastic population changes depend on the standard
Wiener process, / , the size of the population, and the risk parameter , S.

I' is the rate of interest in the capital market.
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max E Ue” (ku — pu® — fx)dt]
0

S.t. dx =(gXx—u)dt+ sxdz
k>0,p>0,f>0,5s>0



The net profit at a particular point in time Is:

R(u, X) = (ku — pu® — X)

Here, let J (X, t) denote “Value function”.

The “Hamilton-Jacobi-Bellman equation” becomes:

s’x%J . (X,t)
2

—J.(x,t) =e""R(u(t), x(t)) +J, (X, D)(gx(t) —u(t))
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Now, the problem is to:
Determine the value function and the control function

that satisfy the Hamilton-Jacobi-Bellman equation.

Let us assume that the value function can be expressed this way:

—It —It 2
J(X(t),t)=e "V (X)=e" (a+bx+cx*)
One part of the value function is now:

V (X) =a+bx+cx’

15



Then, these partial derivatives can be calculated:

3 (x(t),t) =e™" (b + 2¢cx)
J, (x(t),t) =" (2c)

J (X(t),t) =—re " (a +bx +cx?)

As a result, we can rewrite the Hamilton-Jacobi-Bellman equation:

s°x*V. (X)
2

rV (x) =R(u, X) 4 -V (X)(gx —U)
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r(a+bx+cx?) =(ku— pu® — x) +%32x220+ (b + 2cx)(gx —u)

We have to optimize the control, u.

max Z (u) = (ku — pu® — fx) + % s*x*2¢+ (b + 2cx)(gx —u)

The first order optimum condition and the second order maximum condition are:

2
dz(u)zk—Zpu—b—Zcx:O d Z(Zu):—2p<0
du du
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*

The derived value of U is a unique maximum U .

(dZ(u)
. du

Z =Zu)=(ku —p(u’)’ - fx) o

0

\

J

—

/

\

U

1

. k=b—2cx"
2p

U

2y,2

s*x“2¢c+ (b +2cx)(gx—u’)



Z =(k=b—=2cx)u —p(u’)’ - fx+%32x220+ bgx + 2cgx?

Using the optimal values of the control, via the optimized control function, we get:

k—b—2 k—b-2cx ) 1
7" = (k—b—20x)| =2 | _ o] 22T i 2 5%x22¢ + bgx + 2c0X°
2P 2P 2

We can rewrite the Hamilton-Jacobi-Bellman equation:

XYy ((geu)

r'V(x)=R(u’, x)
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r(a+bx+cx?)=(ku” —pu’)? - fX)+ % s*x“2¢+ (b +2cx)(gx—u’)

2
r(a+bx+cx?) =(k—b—2cx)(k_2_zcxj— p(k—t;—Zcxj - 1‘x+%52x22c+ng+2ch2
P P

ra+rbx+rcx2:i(k—b—ZCx)Z—i(k—b—2cx)2—fx+ls2x220+ng+20gx2
2P 4p 2
2 1 2 1 5.0 2
ra -+ rbx + rcx :4—(k—b—2c:x) —fx+§s X*2C + bgx + 2cgx
P



ra+ rbx+rex® = 1 (k? +b” + 4cx? — 2bk — 4ckx + 4bex) — fx +%32x22c +bgx + 2cgx®

4p

ra+ rbx+rex® = 4i (k? +b* — 2bk — 4ckx + 4bcx + 4¢x?) — fx+cs°X” + bgx + 2cgx”
P

2 2
k®+b* -2k c(b-k) ¢ o o . o + bgx + 2cgx’
4p p P

ra+rbx +rcx® =




Now, we have obtained a quadratic function, that always has to be zero.

2 | 12 B 2
Oz(k +Z — 2bk —ra)+(c(b k)+bg—rb— f]x+(c—+c32+2c:g—rcjx2
P P P

If the function is not zero, then the Hamilton-Jacobi-Bellman equation is violated.

Since the function must hold for all possible values of X,

the size of the population, it is clear that we have three equations

that can be used to determine the parameters (a, b, C)-
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4

C2

—+CS
P

2+2(:g—rcjx2 X =0
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Oz(c(b_k)+bg—rb—fjx X=0|=

P
C(b_k)erg—rb—f:O:> (£+g—rjb—%—f=0:>
p p p
%-l-f o of
h__P :> __Ck+p
£_|_g_r C_l_p(g_r)



Now, we can use the newly derived function for C in the expression for b.

_ 20 — &2 9N Q2
__Ppr—zg-sktpt o (r=2 Skt
p(r—2g9-s")+p(g—r) (r—2g-s°)+(g-r)

~k(2g-r+s°)—f

b — b

~(r-2g-s®)k+ f

g+Ss°
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0

|

k?+b? —2bk

4p

a)

k? +b* —2bk =4pra

(k —b)* =4pra
_(k=b)’

d

4pr

—

k? +b? —2bk

4p

r'a



Now, the expression for b can be used in the expression for d.

o Kg-r+s’)-f 2 2
N g+s’ (k(g+s*)—k(2g—r+s°)+ f )
— a= —

4pr 4pr(g+s’)’

a=

(f +kg +ks? —2kg +kr —ks?)’
ad= > —
4pr(g+s°)
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Now, we know the parameters of the value function.

V (X) = a+bx+cx’

They are explicit functions of the parameters in the initially specified
optimization problem.

k(2g —r+5s°)— f
g+s°

jx+ p(r—2g —s°)x’
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Now, we will do the same for the optimal control function.
What are the control function parameters?

~ [ k=Db

— 2CX

2p

*
First, we introduce the functions of p and C in the expression for U .

/
H

k(2g-r+s°)-f

g+s°

j—Zp(r—Zg—sZ)x

2p

\

29



2 2
k_(k(Zg—Hi )_f]+2p(29—r+sz)x k_(k(Zg—Hz )—fj
g+S g+S

U = — U= +(29 —r +5°)X
25 25 (29 )

k_(k(zg—wsZ)—fj

2 2 2
u" = 97> +(2g-r+s)x = u*:k(g+s)—(k(2g—2r+s)—f)+(2g_r+82)x
2p 2p(g+s7)
2 2
u*:kg+ks —2kg +kr —ks* + f 201 +5)x = u*=k(r_g)+f+(2g—r+52)x

2p(g+5s?) 2p(g+5s?)







The numerically specified case:

Let us enter the particular numerical parameters of a real problem.
Lohmander [5] estimated revenue and cost functions and calculated the optimal
equilibrium moose population in Sweden, under deterministic assumptions and

no discounting.

The size of the moose population is however not perfectly predictable and the
capital market often, but not always, includes strictly positive interest rates.

Random disturbances can have large effects.
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We may determine the optimal stochastic control of the moose population in
Sweden, based on the new general functions that have been derived in this

paper.

The figures and functions presented in Lohmander [5] and [6] can be used to
derive the parameters of the stochastic control problem.

Please note that the quadratic objective function in the stochastic optimal

control problem of this paper is an approximation of the particular objective
function presented in [5] and [6].



Both functions are strictly concave. The quadratic
approximation fits the original function very well within the
selected approximation region.

Of course, the derived general equations can be used also for
other animals and in other countries of the world.

These parameter values were estimated:
g =1/3, k=600, p =90, f=90. Let r = 1/30.

In Figure 1. and Figure 2., we can inspect the optimal value
function and the optimal control function.
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Optimal Total Present Value
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Figure 1. The optimal total present value function, V(.) as a function of the population density, X, and the stochastic parameter s.
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Figure 2. The optimal control, the hunting level, u*, as a function of the population density, x, and the stochastic parameter s. 45



Figure 1. shows that the optimal
value function is a strictly concave
function of the size of the
population.

The value is a decreasing function
of the stochastic parameter s.

The optimal population density,
with respect to the value function, is
a decreasing function of s.

Note that the optimal population
density, with respect to the value
function, is not equal to the optimal
population density in the long run.

15000
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Optimal Total Present Value
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The value may be high with a rather high
(initial) population, since the control (= hunting
level) initially can be high, gradually reducing
the population to a much lower level.
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Figure 2. shows the optimal control,
the hunting level, as a function of
the size of the population.

— -« = Uu*(s=0.0)

/ .
Vd - = = Uu¥s=0.2)

Note that the optimal control level is
an increasing function of the
stochastic parameter s.

Optimal hunting level

== U*(s=0.4)
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Expected population growth (without
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The intersections of the alternative T
. . Number of animals per 1000 hectares during the winter

control functions and the line

representing “expected population

growth without hunting”, show the  Qpserve that, if s increases, these “expected
population levels and the hunting equilibria” intersections obtain lower

levels where the expected values of  population densities and lower hunting levels.
the instant population changes are

ZEro0.
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Since the first derivatives of the alternative control functions with respectto X
are higher than the first derivative of “the expected population growth

without hunting”, with respect to X,

the ”expected equilibria” are dynamically stable.

9
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x = Population density
(Number of animals per 1000 hectares during the winter)
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Conclusions:

This paper has derived and presented a stochastic optimal control
approach to wildlife management.

The objective value is the net present value of hunting and meat,
reduced by the present value of the costs of plant damages and
traffic accidents caused by the wildlife population.

General optimal control functions and value functions were derived.

Then, numerically specified optimal control functions and value
functions of relevance to moose management in Sweden have been
calculated and presented.
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