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This presentation will show that:

• There are very large options to increase sustainable continuous
cover forestry in the Borel forests. This way, sustainable flows of
bioenergy and all kinds of forest industry raw materials can be 
obtained and these sectors can be expanded. This is also good when
we consider the global warming problem.

• Continuous cover forestry is often the production economically
optimal forestry method. Hence, the method is not just rational from 
environmental perspectives.)

• The fundamental understanding of forest dynamics can be improved
via new growth functions and estimations.

• The complete system can be optimized with new adaptive methods.
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The boreal forest 
covers very large 
areas in Canada, 
USA, Russia and 
Scandinavia. 
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FAO, Global Forest Resources Assessment 2015
How are the world’s forests changing?
Second edition
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522 Million ha

208 Million ha

125 Million ha

Source: FAO (2015) GLOBAL FOREST RESOURCES ASSESSMENT 2015,
Desk reference, http://www.fao.org/3/a-i4808e.pdf
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Other Natually

Regenerated

Forests:

Russian Federation

522 Million ha

USA

208 Million ha

Canada

125 Million ha

Source: FAO (2015)
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Large parts of 
these regions 
are presently 
covered by 
more or less 
natural forests, 
often dominated 
by different 
species of 
spruce, pine and 
larch. 



• In large parts of these forests, in particular in Canada and Russia, the 
industrial utilization presently is and historically has been close to 
zero. 

• Expanding infrastructure, technological development of harvesters and 
forwarders, increasing costs and environmental problems associated 
with fossil fuel extraction, a growing interest in sustainability and the 
debate on climate change, make it rational to investigate 
environmentally acceptable harvesting options in the remote and 
natural boreal forests. 

• This presentation suggests a way to develop the forest and bioenergy 

sectors, taking relevant objectives, facts and options into account.
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• Industrial expansion of forest utilization is often considered as very 

negative for the environment. 

• It is often assumed that the initially existing natural forests, with trees 

of many size classes, should be removed and replaced by uniform 

plantations. 

• However, it is often optimal, also from a production economic 

point of view, to start harvesting the natural forests using 

continuous cover methods. 
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CAN THIS BE PROVED?

• You should never believe in results from a model with hidden
parameters, a black box.

• Here, you find a few simple but completely described examples.

• In these examples, it is not economically optimal to make clear fellings. 
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First example:

Determination of the optimal initial 

harvest and the stock level after the 

initial  harvest.

In this first example, set up costs

are ignored. In the second example, 

they are considered.
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We start with the stock level V0 (usually

higher than the optimal stock level).

After the initial harvest, h, we have the stock 

level V1 ( = V0-h). 

Our objective function is the total present 

value (*).

* = The sum of all revenues minus costs, at all 

points in time, with consideration of the rate 

of interest in the capital market.
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This is a growth function example:

2( ) 0.0540 0.000130G V V V 

V = Stock level (m3 per hectare) 

G(V) = Growth (m3 per hectare and year)
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Maximization of , the total present value :

0 1 0

0

max ( ) rt

h
p h p G V h e dt



   
V0 = Initial stock level (m3 per hectare).

p0 = Net price per cubic metre (price minus cost per m3) in the initial harvest.

p1 = Net price per cubic metre (price minus cost per m3) in future harvests.

h = Initial harvest (m3 per hectare).

V0-h = Stock level after the initial harvest (m3 per hectare).

G(V0-h) = Growth (m3/year) after the initial harvest.

(Note that the future harvest level is identical to the future growth.)

r = Rate of interest in the capital market.


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0 1 0

0

max ( ) rt

h
p h p G V h e dt



   

0 1 0

1
max ( )

h
p h p G V h

r
   

0 1 0

0

max ( ) rt

h
p h p G V h e dt



    
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0 1 0

1
'( ) 0

d
p p G V h

dh r


   

2

1 02

1
''( ) 0

d
p G V h

dh r


  
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0 1 0

0
0

1

1
0 '( )

'( )

d
p p G V h

dh r

p
G V h r

p

   
      

   

 
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The optimal stock level after the initial harvest

0
1 0

1

'( ) '( )
p

G V G V h r
p

  
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EXAMPLE: Optimization with specific

parameters and a graphical approach:

0 1 0

1
max ( )

h
p h p G V h

r
   

Initial stock level = 130 m3/ha.

p0 = p1 = 200 SEK/m3. 

r = 3%.

Estimated growth function: G = 0.054011123·V - 0.000129731·V·V
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Present value (SEK/ha)

h (m3/ha)
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Present value (SEK/ha)

V1=V0-h (m3/ha)
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2( ) 0.0540 0.000130G V V V 

G(V)

V
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Growth function derivatives:

2( ) 0.0540 0.000130

'( ) 0.0540 0.000260

''( ) 0.000260 0

G V V V

G V V

G V

 

 

  
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'( ) 0.0540 0.000260G V V 

V
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Determinaion of the optimal stock level:

0

1

0

1

'( )

0.0540 0.000260

p
G V r

p

p
V r

p



 
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'( ) 0.0540 0.000260G V V 

V

0

1

3%
p

r
p



92.3



Conclusion:

The optimal stock level is 92.3 m3 per hectare

if the rate of interst is 3% in this case.

It is not optimal to make a clear felling and reduce the 

stock level to zero.
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We can also determine an equation

for the optimal stock level.
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0

1

0

1

0

1

0.0540 0.000260

0.0540

0.000260

207.7 3846

p
V r

p

p
r

p
V

p
V r

p

 

 




 
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0

1

207.7 3846
p

V r
p

 

0

1

p
r

p

Here, we have an expression 

for the optimal stock level

as a function of the rate of interest

and the net prices.
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General principles of rational continuous cover 

forestry derived from the simple analytical method:

1. The optimal stock level is a decreasing function of the rate of interest.

2. The optimal stock level decreases if the net price per cubic metre in the initial 

harvest increases in relation to the net price per cubic metre in future harvests.

3. The optimal stock level increases if the net price per cubic metre in the initial 

harvest decreases in relation to the net price per cubic metre in future harvests.

4. It is optimal to let the stock level be equal to the stock level that maximizes the 

average growth (MSY) only if the rate of interest in the capital market is zero.
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Second example:

Determination of the optimal 

harvest levels, the stock level after

harvest and the harvest intervals.

In this second example, set up costs

are considered
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1 1( , ) ( , )
max ( )

1rt

P v t Q v t c
R h

e



 



0 1

. .s t

h v v 

time

v = volume per hectare

0

0

v0

v1

t

h = The first harvest volume

R(h) = Profit from the first harvest

P(.)    = Price per cubic metre

(reduced by variable cost per

cubic metre) 

in future harvests

Q(.)    = Harvest volume per hectare

in future harvests

c = Set up cost per harvest

occation

r = Rate of interest

Present value
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In Finland, continuous cover forest management can be 

optimized without constraints.

In Sweden, there are several constraints in the forest act. 

For instance, the volume always has to stay above

a specified lower limit. If the volume is below the limit, you

have to make a clearcut.

WITH Swedish constraints, forestry with clearcuts often is 

the economically optimal choice.

WITHOUT Swedish constraints, continuous cover forestry

is very often the economically optimal choice.
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1 1( , ) ( , )
max ( )

1rt

P v t Q v t c
R h

e



 



0 1

. .s t

h v v 
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Example:

Graphical

illustrations

based on 

specified

functions

and 

parameters
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t
v1

Present

value
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Present

value

t
v1
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Present

value

t
v1
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Present

value

t

v1
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The optimal 

value of V1 

is far below

the Swedish 

constraint.

Maximum 

present

value

Optimal 

harvest

interval



Conclusions:

• The two examples showed that it was not 

economically optimal to make clear fellings.

• Considerable numbers of small trees should be left

for continued production.
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Continuous
cover
forest
harvesting 
In the
Swedish
mountains
December 
2014
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Sometimes, we may want to consider the forest at 

the individual tree level or at the size class level.

• In order to optimize the utilization of the natural forests, it is necessary 

to understand the dynamics of growth and the intertemporal 

harvesting options in the already existing forests. 

• This study contains new approaches to nonlinear estimations of 

diameter increment and mortality functions for trees of different 

size classes, under the influence of competition within forests with 

many size classes. 
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A general dynamic function for the basal area of individual trees derived from 
a production theoretically motivated autonomous differential equation
Peter Lohmander

Abstract

A general dynamic function for the basal area of individual trees has been derived from a production 
theoretically motivated autonomous differential equation. The differential equation is: 

and the general dynamic function is:

Keywords: Dynamic function, differential equation, basal area, forest growth
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  11 , 0, 0, 0
dx

a x cx a c x c
dt

     

2

0

0

2

0

0

1
1

1
( )

1
1

1

a ct

a ct

x c
e

x c
x t

x c
c e

x c

  
  
    
  
  
    
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Consider a stem segment, of height H
of the tree. The stem segment is cylindrical with diameter

1D

The leaves cover a cylinder with diameter 2D

2 1, 1D D  

2D

1D

H
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The sun light reaches the tree from the side.

V is the volume of the stem segment. 

x is the basal area. 

2

1( / 4)x D

V Hx
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Volume increment is proportional to the photo synthesis level, P

which in turn is proportional to the sun light projection area on the leaves, A

2A HD
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We may conclude that:

2 1

dV dx
H P A D D x

dt dt
     

Hence,

dx
x

dt
 or , 0

dx
a x a

dt
 
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As the size of the tree increases, the production efficiency 

declines.

Furthermore, the value of 
is often lower for large trees than for small trees. 

A relevant function considering this is:

  11 0, 0,0
dx

a x cx a c x c
dt

     
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Mathematical model development and analysis

0.5 1.5 0, 0,0
dx a

ax bx a b x
dt b

     

  11 , 0,0
dx b

a x cx c x c
dt a

     

The parameters can be estimated via this linear reformulation:
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 

1

1
dx a dt

x cx




Integration gives 

 
0

1

1
dx a dt k

x cx
 


 

  11 , 0,0
dx b

a x cx c x c
dt a

     
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 
0

1

1
dx a dt k

x cx
 


 

   
0

ln 1 ln 1c x c x
at k

c

  
 
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Let us investigate the left hand side, called Z

   
0

ln 1 ln 1c x c x
at k

c

  
 

   
1 1

2 21 1

dZ c c

dx x xc c x c c x

   
       

    

   
1 1

2 1 2 1

dZ

dx x c x x c x
 

 
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   
  

1 1

2 1 1

c x c xdZ

dx x c x c x

  


 

 

1

1

dZ

dx x cx




This confirmes that the integration was correct.
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0

1
ln

1

c x

c x
at k

c

 
 

   

which leads to 

1 1 0

1
ln

1

c x
cat k k ck

c x

 
     
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Let

, ,y x g c h ga  

Then

1

1
ln

1

gy
ht k

gy

 
  

 
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Let

1kK e

We get the simplified expression:

1

1

htgy
Ke

gy





which can be transformed to: 

 1 1htgy Ke gy   or

 1 1ht htg Ke y Ke   
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 
1

1

ht

ht

Ke
y

g Ke

 




 
1

1

ht

ht

Ke
y x

g Ke


 


which gives the desired equation

 

 

2

2

1
( )

1

ht

ht

Ke
x t

c Ke





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Let us determine K

We utilize the initial condition: 0 (0)x x

 
 

0

0 0

1

1

Ke
x

c Ke





which leads to  0 1 1x c K K  

Hence,  0 01 1x c K x c   and finally

0

0

1

1

x c
K

x c





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Now, we know how to determine K

Later, the sign and magnitude of K

will be needed in the analysis. Do we know the sign of K ?

.

   0 0 0 1 0x c x c     

Let us investigate the sign of 0 1x c 
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We assume that the value of
0x

makes sure that the increment is strictly positive. 

 1
dx

a x cx
dt

  Then, we know that:

0 0 0 01 0 1 1 1 0cx cx c x x c        

As a result, we know that 0K 
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Do we know the something about K ?

0

1
0 1

1
K x c







   



0

1
( ) lim ( ) 1

1
K K




   

 


     



   

 
2

1 1

1

dK

d

 

 

  
 

  
2

2
0

1

dK

d 


 



With this information, we know that 1K  
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Now, we may determine ( )x t as an explicit function of
0x

and the parameters.

 

 

2

0

2

0

1 1
( )

11

ht

ht

Ke x c
x t K h a c

x cc Ke

 
     



2

0

0

2

0

0

1
1

1
( )

1
1

1

a ct

a ct

x c
e

x c
x t

x c
c e

x c

  
  
    
  
  
    
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Now, the dynamic properties of

 

 

2

2

1
( )

1

ht

ht

Ke
x t

c Ke





will be determined. 

 
       2 2

4
2

2
1 1 1 1

1

ht ht ht ht

ht

dx Khc
Ke Ke Ke Ke

dt c Ke

 
      
 
 
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  

 
    4

2

2 1 1
1 1

1

ht ht

ht ht

ht

Khc Ke Kedx
Ke Ke

dt c Ke

  
    
 
 

  
 

2

4
2

4 1

1

ht

ht

Khc Ke
dx

dt c Ke

  
 

  
 

 

We already know that 1K   . Hence,   2

1 0htKe  

As a result, we find that 0
dx

dt

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 

 

 
 

2

2

0
1

1
1

1
2 1 1

lim ( )
12 11 1

ht

ht
ht

htt ht
h

htK

d Ke

dt Ke hK Ke
x t

cc Ke hKdc Ke c
Ke

dt





 
   

         
      

 
 
 

Hence, we know that, as ,t  ( )x t monotonically converges to 
1c



How does the function work?

Below, parameter values representing the following case are used.

• Species: Maple (Acer velutinum)

• Initial diameter: 10 cm.

• Source: Hatami, Lohmander, Moayeri and Mohammadi Limaei (2017)

• Competition: No.
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Basal Area (Square Centimeter) as a function of time, t (Years)
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Basal Area (Square Centimeter)

Time (Year)
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Diameter (Centimeter) as a function of time, t (Years)
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Time (Year)

Diameter (Centimeter)
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Theoretical Growth Function Results

A general dynamic function for the basal 

area of individual trees has been derived from a 

production theoretically motivated autonomous 

differential equation. 

The dynamic properties have been 

determined and monotone convergence has been 

proved.



Several version of the growth function exist.

• Some of these take competition into account, via individual tree 

information or via size class information.

• They have been statistically estimated with forest data from Sweden 

and Iran. 

• The estimations can also be based on already published diameter 

frequency distributions from natural forests in dynamic equilibria, in 

Canada, Russia and Scandinavia. 
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NORTH AMERICA
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250 Years of Disturbance Dynamics in a Pristine Old-growth 
Picea abies Forest in Arkhangelsk Region, North-Western 
Russia: a Dendrochronological Reconstruction

RUSSIA
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CHINA
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1( ) ( ) ( 1) ( 1) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t t t tn i n i P i n i P i n i h i n i m i n i       

Size class dynamics

i-1 i i+1

Probability to move up Relative harvest Relative mortalityNumber of individuals
in size class i



Observation:

• Of course, the probabilities to move up are usually affected by 
competition. We may sometimes want to consider these things
explicitly. 
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( ) ( , (0),..., ( );.)t tP i P i n n N

• In other cases, we may be interested in equilibrium probabilities
(when competition is considered fixed).
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1( ) ( )t tn i n i 

In dynamic equilibrium:

1( ) ( ) ( 1) ( 1) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t t t tn i n i P i n i P i n i h i n i m i n i       

0 ( 1) ( 1) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t tP i n i P i n i h i n i m i n i     

In dynamic equilibrium, without harvesting:

0 ( 1) ( 1) ( ) ( ) ( ) ( )t t t t t tP i n i P i n i m i n i    
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0 ( 1) ( 1) ( ) ( ) ( ) ( )t t t t t tP i n i P i n i m i n i    

( ) ( ) ( ) ( ) ( 1) ( 1)t t t t t tP i n i m i n i P i n i   

 ( ) ( ) ( ) ( 1) ( 1)t t t t tP i m i n i P i n i   

( ) ( 1)

( 1) ( ) ( )

t t

t t t

n i P i

n i P i m i




 
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( ) ( 1)

( 1) ( ) ( )

t t

t t t

n i P i

n i P i m i




 

Special case:
P = > 0, P is constant (=1), m > 0, m is constant.
If i represents diameter class, then if P constant, this
implies constant diameter increment, which means that the
basal area increment is proportional to the square root of the
basal area. Then, if m = constant:



86

( ) ( 1) 1

( 1) ( ) ( ) 1

0 1

t t

t t t

n i P i P

n i P i m i P m m

P

P m


  

   

 


0

20

40

60

80

100

120

0 10 20 30 40 50 60

F
r
e

q
u

e
n

c
y
 
i
n

 
E

q
u

i
l
i
b

r
i
u

m

Diameter (cm)

m = 0.1 m = 0.05 m = 0.15



87

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90

F
r
e

q
u

e
n

c
y
 
i
n

 
E

q
u

i
l
i
b

r
i
u

m

Diameter Class (cm)

m = 0.02 m = 0.04

 

1

1

0 ,

80.765

120.02

dx
a x bx

dt

x b

a

b



 

 





x = basal area 

 4 210 m

( 1) ( )

( ) ( 1)

n i P i

n i P i m




 

With realistic

growth

function:
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IN GENERAL:

With observations of n(i) for sufficiently many values

of i, it is possible to simultaneously determine

the parameters of the increment function, 

the competition function and the relative 

mortality function. 



The master model:

Stochastic dynamic programming with detailed sub problems
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Stochastic dynamic programming with detailed sub problems: 
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• The forest resource dynamics sub model of the industrial model, is 
based on an approximation of the intertemporal forest production 
function, derived via the estimated dynamic model of a part of the 
boreal forest.

• The market price transition probability matrix, used in the 
stochastic dynamic programming model, is derived via world market 
price series.
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• In each period, the production levels of bioenergy, sawn wood and 

fiber products, are optimized, based on the revealed market 

prices, the state of the natural resource and all other parameters. 

The model also determines the expected shadow prices. 
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Alternative model structure:

100

10 stochastic simulations

of the complete system

during 200 years with estimation

of the expected present value.

A multidimensional loop with different adaptive 

control function parameter value combinations is created.

For each parameter combination:

A table with expected present values for different

adaptive control function parameter value

combinations is created. 

A multidimensional nonlinear approximation of the expected

present value, as a function of the adaptive control function

parameters, is derived via regression analysis.

The adaptive control

function parameters

are analytically

determined via 

the first order 

optimum conditions

and the second 

order maximum

conditions.  

The maximum 

expected present

value is determined

via the determined

control function

parameter values.



FINAL CONCLUSIONS:

• There are very large options to increase sustainable continuous
cover forestry in the Borel forests. This way, sustainable flows of
bioenergy and all kinds of forest industry raw materials can be 
obtained and these sectors can be expanded. This is also good when
we consider the global warming problem.

• Continuous cover forestry is often the production economically
optimal forestry method. Hence, the method is not just rational from 
environmental perspectives.)

• The fundamental understanding of forest dynamics can be improved
via new growth functions and estimations.

• The complete system can be optimized with new adaptive methods.
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