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This presentation will show that:

* There are very large options to increase sustainable continuous
cover forestry in the Borel forests. This way, sustainable flows of
bioenergy and all kinds of forest industry raw materials can be
obtained and these sectors can be expanded. This is also good when
we consider the global warming problem.

e Continuous cover forestry is often the production economically
optimal forestry method. Hence, the method is not just rational from
environmental perspectives.)

* The fundamental understanding of forest dynamics can be improved
via new growth functions and estimations.

* The complete system can be optimized with new adaptive methods.



The boreal forest

e -~
gam
rda
S8 5
— (q0]
> © ;=
- >
)
g oS
Cx .S
L, -0
e -
O < S
20un S
O @©IW




TABLE 2 Top ten countries by reported forest area in 2015

Forest area

Russian Federation 814931
2 Brazil 493538 59 12
3 (Canada 347069 38 9
4 United States of America 310095 34 8

FAO, Global Forest Resources Assessment 2015
How are the world’s forests changing?
Second edition




Table 9. Other naturally regenerat - ~\
Parts of

Other naturally regenerated forest (1 000 ha) Table 9.
J
Tier
Country/Territory
Russian Federation 554573 535777 536358 522180 522372 522 Million ha
United States of America 214500 208671 204623 207862 208431 208 Million ha
Canada 137057 132098 129641 127265 125361 125 Million ha

Source: FAO (2015) GLOBAL FOREST RESOURCES ASSESSMENT 2015,
Desk reference, http://www.fao.org/3/a-i4808e.pdf



Other Natually
Regenerated
Forests:

Russian Federation
522 Million ha

USA
208 Million ha

Canada
125 Million ha

Source: FAO (2015)




Large parts of
these regions
are presently
covered by
more or less
natural forests,

often dominated
by different
species of
spruce, pine and
larch.




* In large parts of these forests, in particular in Canada and Russia, the
Industrial utilization presently is and historically has been close to

ZErO0.

« Expanding infrastructure, technological development of harvesters and
forwarders, increasing costs and environmental problems associated
with fossil fuel extraction, a growing interest in sustainability and the
debate on climate change, make it rational to investigate
environmentally acceptable harvesting options in the remote and
natural boreal forests.

* This presentation suggests a way to develop the forest and bioenergy
sectors, taking relevant objectives, facts and options into account.



* Industrial expansion of forest utilization Is often considered as very
negative for the environment.

* |t Is often assumed that the initially existing natural forests, with trees
of many size classes, should be removed and replaced by uniform
plantations.

* However, It is often optimal, also from a production economic
point of view, to start harvesting the natural forests using
continuous cover methods.



CAN THIS BE PROVED?

* You should never believe in results from a model with hidden
parameters, a black box.

* Here, you find a few simple but completely described examples.

* In these examples, it is not economically optimal to make clear fellings.



First example:
Determination of the optimal initial

harvest and the stock level after the
Initial harvest.

In this first example, set up costs
are ignored. In the second example,
they are considered.
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We start with the stock level VO (usually
higher than the optimal stock level).

After the initial harvest, h, we have the stock
level V1 (= VO-h).

Our objective function Is the total present
value (*).

* = The sum of all revenues minus costs, at all
points In time, with consideration of the rate
of interest in the capital market.

12



This Is a growth function example:

G(V) = Growth (m3 per hectare and year)

= » \/ = Stock level (m3 per hectare)

G(V) ~0.0540V —0.000130V°

13



Maximization of IT , the total present value :

msle = p,h +j p,G(V, —h)e "dt
0

VO = Initial stock level (m3 per hectare).

PO = Net price per cubic metre (price minus cost per m3) in the initial harvest.

Pl = Net price per cubic metre (price minus cost per m3) In future harvests.
h = Initial harvest (m3 per hectare).

V0-h = Stock level after the initial harvest (m3 per hectare).
G(VO0-h) = Growth (m3/year) after the initial harvest.

(Note that the future harvest level is identical to the future growth.)
r = Rate of interest in the capital market. 14



mr?xH = p,h +_[ p,G(V, —h)e "dt
0

m?xH = p,h+ p,G(V, - h)_[e‘”dt
0

1
m?XH = Pon+ p,G(V, _h)F

15



First order optimun condition

dIt _
dh
Second order maximum condition

d°I1
dh?

o — plG'(VO—h)%:()

=plG"(Vo—h)%<o
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The optimal stock level after the initial harvest
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EXAMPLE: Optimization with specific
parameters and a graphical approach:

Initial stock level = 130 m3/ha.

PO = pl =200 SEK/m3.

r = 3%.

Estimated growth function: G = 0.054011123-V - 0.000129731-V-V

mhaXH = poh"' plG(\/O _h)1
r

1

200-h + -200-(0.054011123-(130 = h) = 0.000129731-(130 = h)-(130 = h))

0.03

19



Present value (SEK/ha)

150000

140000

7

=50

h (m3/ha)

+

1

200-h + -200-(0.054011123-(130 - h) - 0.000129731-(130 = h)-(130 - h))



Present value (SEK/ha)
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1
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G(V)

X
4[]0\ 500 600

G(V) ~0.0540V —0.000130V°
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Growth function derivatives:

G(V) ~ 0.0540V —0.000130V 2
G'(V) ~ 0.0540 —0.000260V
G"(V) ~ —0.000260 < 0

23



) = 0.0540-0.000260V
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Determinaion of the optimal stock level:

G'(V) :&r

0.0540 — 0.000260V = oy
D,



G'(V) = 0.0540—-0.000260V

Po - _ 30

Py

00000000000

92.3

26



Conclusion:

The optimal stock level Is 92.3 m3 per hectare
If the rate of interst is 3% In this case.

It I1s not optimal to make a clear felling and reduce the
stock level to zero.

27



We can also determine an equation
for the optimal stock level.

28



0.0540 — 0.000260V = 22 r
P,

_0.0540+ Po ¢

V = P
~0.000260

V ~207.7 38460
P,

29



V ~207.7—3846 10

P,
- Here, we have an expression
~» . forthe optimal stock level

as a function of the rate of interest
and the net prices.

50
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General principles of rational continuous cover
forestry derived from the simple analytical method:

1. The optimal stock level is a decreasing function of the rate of interest.

2. The optimal stock level decreases if the net price per cubic metre in the initial
harvest increases in relation to the net price per cubic metre in future harvests.

3. The optimal stock level increases if the net price per cubic metre in the initial
harvest decreases in relation to the net price per cubic metre in future harvests.

4. It 1s optimal to let the stock level be equal to the stock level that maximizes the
average growth (MSY) only if the rate of interest in the capital market is zero.

31



Second example:
Determination of the optimal

harvest levels, the stock level after
harvest and the harvest intervals.

In this second example, set up costs
are considered

32



Present value

MaX ;T — R(h) | P(Vl’t)Q(V11t) —C h = The first harvest volume

R(h) = Profit from the first harvest

ert . 1 P(.) = Price per cubic metre
(reduced by variable cost per

S t cubic metre)

T in future harvests

Q(.) = Harvest volume per hectare

C = Set up cost per harvest
occation
V0 r = Rate of interest
vl
0 time

33




In Finland, continuous cover forest management can be
optimized without constraints.

In Sweden, there are several constraints in the forest act.
For instance, the volume always has to stay above

a specified lower limit. If the volume is below the limit, you
have to make a clearcut.

WITH Swedish constraints, forestry with clearcuts often is
the economically optimal choice.

WITHOUT Swedish constraints, continuous cover forestry
is very often the economically optimal choice.

34



max 7z = R(h) - P(v,,t)Q(v;,t) —C

ert _1
S.1.

h=v, -V,



Example:
Graphical
Ilustrations
based on
specified
functions
and
parameters

[30-(200 - V) +

0.001666667

20.
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Case 0:

! OPT CCF 150812;
! Peter Lohmander;

v0 = 200;
p = 20;
c = 50;

r = 0.03;
mO0 = 30;
c0 = 50;
max = Y;
Y =

h = vO0-vl;
h < vO0;

h > 13

mp = m0 - a*h-b*h*h;

Numerical Analysis
Peter Lohmander 150812

RO + (p*Q-c)/ (Rexp(r*t)-1);

RO = mO*h-a/2*h*h-b/3*h*h*h-c0;
Q = 1/(1/400+(1/v1-1/400) *Rexp(-0.05*t))-vl;

! Derivation of initial marginal price function;

150*a+ (1 50)“2*b="103

200*a+ (200) *"2*b =
Qfree (a);
@free (b) ;

41



Local optimal solution found.
Objective value:
Infeasibilities:

Total solver iterations:

Variable

VO

Maximum =

present ;

value MO

co

Optimal Y

harvest RO

interval \ Q

The optimal E
value of V1 V1
is far below —_— MP
the Swedish A

constraint. B

6084.286
0.000000

Value
200.0000
20.00000
50.00000

0.3000000E-01
30.00000
50.00000
6084.286
4651.524
T1.17267
2240775
150, 7051
49.29487
19.777588
-0.1833333
0.1666667E-02

34

Reduced Cost

0.
.000000
.000000
.000000
.000000
.000000
.000000
.000000

O OO O oo oo

U.1339671E~08

O O O O O

000000

000000

.000000
.000000
.000000
.000000
.000000

42



Conclusions:

 The two examples showed that it was not
economically optimal to make clear fellings.

 Considerable numbers of small trees should be left
for continued production.
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Sometimes, we may want to consider the forest at
the individual tree level or at the size class level.

* In order to optimize the utilization of the natural forests, It IS necessary
to understand the dynamics of growth and the intertemporal
harvesting options in the already existing forests.

* This study contains new approaches to nonlinear estimations of
diameter increment and mortality functions for trees of different
size classes, under the influence of competition within forests with
many size classes.
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A general dynamic function for the basal area of individual trees derived from

a production theoretically motivated autonomous differential equation
Peter Lohmander

Abstract

A general dynamic function for the basal area of individual trees has been derived from a production
theoretically motivated autonomous differential equation. The differential equation is:

%:a\/}(l—cx) - a>0,c>0,0<x<c™
oo+ |
e 1
2
C \/XT’\EH eVt _1
e -1

Keywords: Dynamic function, differential equation, basal area, forest growth

and the general dynamic function is: X(t) =

48



Consider a stem segment, of height H

of the tree. The stem segment is cylindrical with diameter D1

The leaves cover a cylinder with diameter D2

_ D,
D,=yD,,7>1 -

49



The sun light reaches the tree from the side.

V s the volume of the stem segment.

X s the basal area.
X=(m/4)D;
V =HX



Volume increment is proportional to the photo synthesis level, P

which In turn is proportional to the sun light projection area on the leaves, A

A=HD,



We may conclude that:

dV—H%ocPocAocD o D, oc /X

dt dt

d
—XOC\& or %:a X,a>0
dt dt



As the size of the tree increases, the production efficiency
declines.

Furthermore, the value of )/
Is often lower for large trees than for small trees.

A relevant function considering this is:

%: \/§(1—CX) a>0,c>00<x<c™

53



Mathematical model development and analysis

%:a\/;(l—cx) , C=E>O,O<X<C_1
a

The parameters can be estimated via this linear reformulation:

%:ax%—bxl'5 a>O,b>0,0<x<%

dt

54



%:a\/;(l—cx) , C=E>O,O<X<C_1
dt a
1

\/§(1—CX)

Integration gives

dx = adt

1

jﬁ(l—cx)

dx = [adt+k,



dx = [adt+k,

I;
\&(1—cx)
In(\/E\&H)—In(\/C\/x —1)

=at+Kk,

Je



In(\/c\/x +1)—In(\/c\/x —1)

=at+Kk
\/E 0
Let us investigate the left hand side, called /
z_ 1 ( Je ) 1 [ Je j
d e (Vex+1)( 2% ) Ve (Vevx 1) 2
dz 1 1

dx 2Jx(Vex +1)  2Jx (Ve -1)




iz (Vex=1)—(evx+1]

¢ 2Jx(Vex +1)(Vex -1)

z 1

dx ﬁ(l—cx)




In

(Jex+1)

Vevx -1,

In

Je

=at+k,

which leads to

/JOJX+1\

Vevx -1,

= Jeat+k, k =+/ck,



Let

y=+/%x,g=+c,h=ga

Then

In(gy+1j:ht+kl
gy -1




Let

K =e"
We get the simplified expression:
gy +1 . K ht
1 = KE which can be transformed to:
gy —

gy +1=Ke™ (gy—1) or
g(1-Ke")y=-1-Ke"




—1— Ke"
g(1-Ke")

y:

ht
Ke™ +1 o | |
y — \/ — which gives the desired equation

g(Ke™ -1)




Let us determine K

We utilize the initial condition: X, = X(0)

(Ke®+1)

e Jefke g
Hence, (\/Z\/E—l) K = \/g\/g+l and finally

which leads to \/XO \/C(K —1) =K +1




Now, we know how to determine K .

Later, the sign and magnitude of K

will be needed in the analysis. Do we know the sign of K 2

(\M>OA\/E>O):>(\/X\/C +1> O)

Let us investigate the sign of \/Xo \/C -1

64



We assume that the value of XO

makes sure that the increment is strictly positive.

% — a\/; (1— CX) Then, we know that:

1-cx, >0 = cx, <1 = \/C\/X0<\/i = \/XO\/C—1<O

As a result, we know that

65



Do we know the something about ‘ K‘ ?

K:% 0<¢=4%c<1
K(p=e)= 12 = limK(g=e)=-1
c—1 £—0
dK _(¢-1)-(¢+1) _ dK__-2
d¢ (¢-1) d¢ (¢-1)

With this information, we know that

66



Now, we may determine X(t) as an explicit function of XO

and the parameters.

x(t):(Ke +) - YoNerl h=a'c =

(:(Keht —1)2 \/7\/_ 1

67



Now, the dynamic properties of

X(t) =

dx
dt

/

\

(Ke™ +1)
C(Keht —1)2

2Khc

CZ(Kem—4)4)

will be determined.

((Ke“t 1) (Ke™ 1) —(Ke" +1) (Ke" —1))



dx [ 2Khe(Ke" +1)(Ke" ~1)

X _ ((Ke"t ~1)—(Ke" +1))

dt \ c? (Keht —1)4 )
" (—4th((Keht)2—1)\
di 2 (waht 1\

\ c (Ke 1) )

We already know that K < —1 . Hence, (( KeM )2 _1) >0

As a result, we find that % >0
dt



lim x(t) =
t—o0

h>0

K<-1

(d (Keht +1)2 |
dt

\ J

)

dc(Keht —1)2 \

\

dt

J

1
2(Ke" +1)hK ) (“ Kehtj

2¢(Ke™ —1)hK - C(

1
1_ Keht j

-1
Hence, we know that, as T — o0, X(t) monotonically converges to C

70
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How does the function work?

Below, parameter values representing the following case are used.
» Species: Maple (Acer velutinum)

* |nitial diameter: 10 cm.
* Source: Hatami, Lohmander, Moayeri and Mohammadi Limaei (2017)

* Competition: No.

71



Basal Area (Square Centimeter) as a function of time, t (Years)

. i -5 \2
J —.100 -J(3.615978615-10 ) +1

. 4 J -5
-EXP((1.3468-J(3.615978615-10 )).t) + 1

ofF 4 5

J| —+100]./(3.615978615.10 ) - 1
SRR J y
= : - )2
J| —+100]./(3.615978615.10 ) + 1
-5 il 3 -5
(3.615978615.10 ). ‘EXP((1.3468.,/(3.615978615-10 ))-.t) - 1
- A -5
J|—-100]./(3.615978615.10 ) - 1
. \ 4 J y
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Basal Area (Square Centimeter)
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Diameter (Centimeter) as a function of time, t (Years)

3 = ) -5 \2
J| —-100]-/(3.615978615.10 ) + 1
. 4 -5
‘EXP((1.3468.,/(3.615978615.10 )).t) + 1
( -5
J| —-+100]./(3.615978615.10 ) - 1
LK J
4!
(7 -5 3
—.100.,/(3.615978615.10 ) + 1
-5 . 4 -5
(3.615978615.10 ). ‘EXP((1.3468.,/(3.615978615-10 )).t) - 1
(' -5
J| —-100|./(3.615978615.10 ) - 1
. \ 4 Y
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Theoretical Growth Function Results

A general dynamic function for the basal
area of individual trees has been derived from a
production theoretically motivated autonomous
differential equation.

The dynamic properties have been
determined and monotone convergence has been
proved.



Several version of the growth function exist.

« Some of these take competition into account, via individual tree
Information or via size class information.

 They have been statistically estimated with forest data from Sweden
and lran.

* The estimations can also be based on already published diameter
frequency distributions from natural forests in dynamic equilibria, In
Canada, Russia and Scandinavia.
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Age and Size Structure of Gap-Dynamic,
Old-Growth Boreal Forest Stands in
Newfoundland

John W. McCarthy and Gordon Weetman

McCarthy, J.W. & Weetman, G. 2006. Age and size structure of gap-dynamic, old-growth boreal
forest stands in Newfoundland. Silva Fennica 40(2): 209-230.
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Figure 4 Diameters distribution of spruce in relation to four different canopy positions (D, C, |,

0)

250 Years of Disturbance Dynamics in a Pristine Old-growth  Tatiana Khakimulina

Picea abies Forest in Arkhangelsk Region, North-Western
Russia: a Dendrochronological Reconstruction

Supervisors: Igor Drobyshev

Mats Niklasson

RUSSIA

Swedish University of Agricultural Sciences
Master Thesis no. 163

Southern Swedish Forest Research Centre
Alnarp 2010
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Forests 2015, 6, 2261-2280: doi:10.3390/f6062261 CH I N A

forests

ISSN 1999-4907
www.mdpi.com/journal/forests

Article

Nonlinear Simultaneous Equations for Individual-Tree
Diameter Growth and Mortality Model of Natural Mongolian
Oak Forests in Northeast China

Wu Ma !? and Xiangdong Lei *
B Total trees B Dead trees

2000

Number of trees (trees/hm?)

1000

5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 =50

Diameter class (cm)

Figure 2. Distribution of total trees and dead trees by diameter classes of Mongolian oak.



Size class dynamics

Number of individuals Probability to move up

|n size cIass i

Relative harvest

Relative mortality

t+1(|) n (|)+

—h:(i)ﬂt (1)

—m: ()n; (1)

81




Observation:

e Of course, the probabilities to move up are usually affected by
competition. We may sometimes want to consider these things
explicitly.

P (1) =P.(1,n(0),...,n(N);.)

* In other cases, we may be interested in equilibrium probabilities
(when competition is considered fixed).

82



N, () =N () +R0-Dn,(1-1) —Rn (1) —h®n () —m(1)n(1)

In dynamic equilibrium:

nt+1(i) — nt (I)
0= Pt(' _1)nt (1-1) - Pt(l)nt (1) - ht(l)nt (1) — mt(i)nt (1)

In dynamic equilibrium, without harvesting:

0=R-Dn(-1) =R®n(4) —m()n ()



0=R0-Dn(-1) -ROn () —m()n(1)
Pt(i)nt(i) T mt(i)nt(i) — Pt(l _1)nt (i _1)
(R@)+m(i))n, (i) =R -n, (i -1)

n (i) _ R(i-1
n(i-1) R @i)+m,(i)




n@ __ R(O-D

n(i-1)  R(i)+mi)

Special case:

P =>0, Pis constant (=1), m > 0, m is constant.

If i represents diameter class, then if P constant, this

implies constant diameter increment, which means that the
basal area increment is proportional to the square root of the
basal area. Then, if m = constant:



n(i) _ RG-H P 1
nGi-1) P@)+m() P+m 1+m
P
P+m

0< <1

Frequency in Equilibrium
- -
N N o () (=) N
(= (=) (=} (= (= (=}

o

0 10 20 30

40

Diameter (cm)

—m=01 —m=0.05

m = 0.15
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With realistic
growth
function:

e

n(i+1)  P(i)

- n(i) C P(i+1)+m

J

X = basal area

(107 m?)

{

% = aV/x (1- bx)]

O<x<b™
a=380.765
b=120.02

120

100

Frequency in Equilibrium
H o
() o
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—m =0.02 —m = 0.04
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IN GENERAL:

With observations of n(i) for sufficiently many values
of i, it is possible to simultaneously determine
the parameters of the increment function,

the competition function and the relative
mortality function.

n(i+1) P(i)

n(i) P@i+D)+m(m,,...m,i)
P(i) = P(i:a,b) = F (a X(i) (1—bx(i)),C(i))
C(@i) =G(i,n(0),....n(N):C,,....C, )




The master model:

Stochastic dynamic programming with detailed sub problems

f(t,s,m)= max
ueU (t,s,m)

max 7z(X,..., X, ;U,t,s,m)

S.t.

+ > z(n|m) f (t+1,5,,,(s,u),n)

V(t,s,m)|(0<t<T)




Brent Spot Price FOB (S/bbl)
Real Brent Spot Price FOB (S/bbl)

(The real prices are given in the price level of 2015. They were deflated by CPI (USA))
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Stochastic dynamic programming with detailed sub problems:

max
ufe U(ts SI ’ml‘)

y

\

max 7T(X1, ooy XK 5 Up,s ta St mt)
s.z1. a“x1+...+a”<x1<$Cl e @1 X1+t X <Cp

+6 > T(myr|my) f(& + 1, 841 (e, ), Mypy)

Mty
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For instance, it should be possible to combine the multi-period and adaptive de-
cision making structure of stochastic dynamic programming with the fuzzy repre-
sentation of the many single period optimization problems. This way, we may han-
dle real world problems in an even more realistic and relevant way. f(z, s;,m;) =

max
ueU(t,s; ,m;)

(

\

max m(xy, ..., Xg; Uz, £, St, ;)
s.t. a/llx1+...+a/11<xKSC1 e X1+ rar g xg <Cp,

+ﬁ Z T(mt+1|mt)f(t + 19 St+1(Sta ul‘)amt+1)

US|

)

J

NV (8, 5,m)|(0<1<T)

is the expected present value of an industrial sector as a function of time, state of the
sector and state of the markets, giving that all future decisions are optimally taken,

conditional on future information. U(-) 1s the set of feasible controls; controls that are

exogenous to the period and state specific fuzzy maximization problems. 7(m.. | m;)
1s the market state transition probability; the probability that the markets move from
state m, in period ¢ to state m,, in the next period. 8 denotes the one period discount-

ing factor. 7' 1s the time horizon.
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* The forest resource dynamics sub model of the industrial model, Is
based on an approximation of the intertemporal forest production
function, derived via the estimated dynamic model of a part of the
boreal forest.

* The market price transition probability matrix, used in the
stochastic dynamic programming model, is derived via world market
price series.
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* In each period, the production levels of bioenergy, sawn wood and
fiber products, are optimized, based on the revealed market
prices, the state of the natural resource and all other parameters.
The model also determines the expected shadow prices.
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Alternative model structure: ( ~N
The maximum

A multidimensional loop with different adaptive \ expected present
d.

trol functi t I binati : ¢ value is determined
control function parameter value combinations is create via the determined

For each parameter combination: control function
N\ parameter values.

10 stochastic simulations

of the complete system

during 200 years with estimation
of the expected present value.

Q y The adaptive control
function parameters
A table with expected present values for different are analytically
adaptive control function parameter value determined via
k combinations is created. / the first order
‘ optimum conditions
and the second
" A multidimensional nonlinear approximation of the expected order maximum
present value, as a function of the adaptive control function conditions.
kparameters, is derived via regression analysis.
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FINAL CONCLUSIONS:

* There are very large options to increase sustainable continuous
cover forestry in the Borel forests. This way, sustainable flows of
bioenergy and all kinds of forest industry raw materials can be
obtained and these sectors can be expanded. This is also good when
we consider the global warming problem.

e Continuous cover forestry is often the production economically
optimal forestry method. Hence, the method is not just rational from
environmental perspectives.)

* The fundamental understanding of forest dynamics can be improved
via new growth functions and estimations.

* The complete system can be optimized with new adaptive methods.
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