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Our world
contains
very large
areas of
mixed 
species 
forests
with trees
of different 
sizes. 

By Phil P Harris. - Own work, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=717267
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• These forests are important to several industries and to the 
environment.

• The prices for wood from different species of trees are stochastic.

• This paper presents a new adaptive method for sustainable and 
economically optimal management of these forests.
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Example of a multi 
species continuous
cover forest:

Different species 
have different
colors (blue and 
green). 

Trees have different 
sizes.
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• In principle, this problem could be correctly solved via stochastic
dynamic programming, SDP. 

• However, SDP can not in reasonable time handle the extremely large
number of state dimensions.

• The method used here includes optimization of adaptive control
function parameters via repeated full system stochastic simulations, 
objective function approximation and analytical parameter 
optimization.
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• A computer model was constructed for this purpose.

• The expected present value of a mixed species continuous cover 
forest is maximized with consideration of correlated stochastic
roundwood market prices, dynamically changing tree sizes and local
competition. 
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Method references: 
Optimization of adaptive control function parameters via repeated full system 
stochastic simulations, objective function approximation and analytical parameter 
optimization

• Lohmander, P., Two Approaches to Optimal Adaptive Control under Large 
Dimensionality, INTERNATIONAL ROBOTICS AND AUTOMATION JOURNAL, Volume 
3, Issue 4, 2017, DOI:10.15406/iratj.2017.03.00062
http://medcraveonline.com/IRATJ/IRATJ-03-00062.php
http://www.Lohmander.com/PL_171204a.pdf
http://www.Lohmander.com/PL_171204aORIG.pdf
http://www.Lohmander.com/PL_171204aORIG.docx

• Lohmander, P., Optimal Stochastic Dynamic Control of Spatially Distributed
Interdependent Production Units. In: Cao BY. (ed) Fuzzy Information and 
Engineering and Decision. IWDS 2016.
Advances in Intelligent Systems and Computing, vol 646. Springer, Cham, 2018
Print ISBN 978-3-319-66513-9, Online ISBN 978-3-319-66514-6, eBook Package: 
Engineering, LOSDCSDI
https://doi.org/10.1007/978-3-319-66514-6_13
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The initial 
conditions:

A forest with
spatially distributed
trees of different 
species, initial 
diameters and 
spatial coordinates.
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Softwood trees are
affected by 
local competition
from other softwood
trees.
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Hardwood trees are
affected by 
local competition
from other hardwood
trees.
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Trees are
affected by 
local competition
from other trees
of different species.



A complete numerical forest model has been developed with individual tree growth functions
that are sensitive to local competition from neighbour trees.

References to related papers on tree growth functions:

• Lohmander, P., A General Dynamic Function for the Basal Area
of Individual Trees Derived from a Production Theoretically
Motivated Autonomous Differential Equation,
Iranian Journal of Management Studies (IJMS), Vol. 10, No. 4,
Autumn 2017, pp. 917-928,
https://ijms.ut.ac.ir/article_64225_61b32fe374f9df8bca512abbe3b5c379.pdf
https://ijms.ut.ac.ir/article_64225.html
http://www.Lohmander.com/PL_IJMS_2017.pdf

• Hatami, N., Lohmander, P., Moayeri, M.H., Mohammadi Limaei, S.,
A basal area increment model for individual trees
in mixed continuous cover forests in Iranian Caspian forests,
Journal of Forestry Research, 2018. pp 1-8. Springer Link.
HLMM
https://doi.org/10.1007/s11676-018-0862-8
https://link.springer.com/article/10.1007%2Fs11676-018-0862-8
Link for reading

• Mohammadi, Z., Mohammadi Limaei, S., Lohmander, P., Olsson, L.,
Estimation of a basal area growth model for individual trees
in uneven-aged Caspian mixed species forests,
JOURNAL OF FORESTRY RESEARCH, November 30, 2017
DOI: https://doi.org/10.1007/s11676-017-0556-7
https://link.springer.com/article/10.1007%2Fs11676-017-0556-7
http://www.Lohmander.com/PL_171204f.pdf
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References to related papers on tree growth functions (continued):

• Mohammadi Limaei, S., Lohmander, P., Olsson, L.,
Dynamic growth models for continuous cover multi-species forestry
in Iranian Caspian forests,
JOURNAL OF FOREST SCIENCE, 63, 2017 (11): 519-529,
doi: 10.17221/32/2017-JFS
http://www.agriculturejournals.cz/publicFiles/232535.pdf
http://www.Lohmander.com/PL_171204d.pdf

• Lohmander, P., Optimal Stochastic Dynamic Control of Spatially Distributed Interdependent
Production Units. In: Cao BY. (ed) Fuzzy Information and Engineering and Decision. IWDS 2016.
Advances in Intelligent Systems and Computing, vol 646. Springer, Cham, 2018
Print ISBN 978-3-319-66513-9, Online ISBN 978-3-319-66514-6, eBook Package: Engineering,
LOSDCSDI
https://doi.org/10.1007/978-3-319-66514-6_13

• Lohmander, P., Olsson, J.O., Fagerberg, N., Bergh, J., Adamopoulos, S.,
High resolution adaptive optimization of continuous cover
spruce forest management in southern Sweden,
SSAFR 2017, Symposium on Systems Analysis in Forest Resources,
Clearwater Resort, Suquamish, Washington, (near Seattle), August 27-30, 2017
http://www.Lohmander.com/SSAFR_2017_Lohmander_et_al.pptx
http://www.Lohmander.com/SSAFR_2017_Lohmander_et_al.pdf
http://www.Lohmander.com/SSAFR_2017_Lohmander_Soft.txt
SSAFR 2017

16

http://www.agriculturejournals.cz/publicFiles/232535.pdf
http://www.lohmander.com/PL_171204d.pdf
https://doi.org/10.1007/978-3-319-66514-6_13
http://www.lohmander.com/SSAFR_2017_Lohmander_et_al.pptx
http://www.lohmander.com/SSAFR_2017_Lohmander_et_al.pdf
http://www.lohmander.com/SSAFR_2017_Lohmander_Soft.txt
http://depts.washington.edu/ssafr17/


• Every five year period, a harvesting team visits the forest.

• Optimal adaptive harvest decisions are taken, based on the prices of
the different species, the local competition conditions in the forest, 
harvest cost and revenue functions and interest rate in the capital
market.
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Continuous
cover
forest
harvesting 
in the
Swedish
mountains,
December 
2014
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• The optimal adaptive control of the system works this way: 

• A limit diameter function value, DL, is calculated.

• The value of the DL is derived for each tree, in every period. If the diameter of
the tree exceeds the DL, then the tree is instantly harvested.

• Otherwise, the tree is left to continue to grow at least one more period.

• The parameters of the DL are optimized via a large number of stochastic full 
system simulations, expected objective function approximation and analytical
control function parameter optimization. 
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Instant Harvest
Region

Wait Longer
Region

Optimal 
Control 
Boundaries
as 
functions of
the local
competition
levels

= Optimal Limit Diameter of Species 1

Deviation of the price of species 1 from the expected price level
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Example with particular parameters and  
particular stochastic price developments
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Period = 0
Year = 0

P1 = 52.831
P2 = 54.309

Map after
growth
and before
harvest
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Period = 0
Year = 0

P1 = 52.831
P2 = 54.309

Map of
harvested
trees
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Period = 0
Year = 0

P1 = 52.831
P2 = 54.309

Map
after
harvest
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Period = 1
Year = 5

P1 = 48.111
P2 = 57.984

Map before
growth
and before
harvest
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Period = 1
Year = 5

P1 = 48.111
P2 = 57.984

Map after
growth
and before
harvest
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Period = 1
Year = 5

P1 = 48.111
P2 = 57.984

Map of
harvested
trees
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Then, some periods follow
with low prices of both species.

Trees grow and no harvest takes place.

Then, we reach period 6.
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Period = 6
Year = 30

P1 = 58.572
P2 = 57.650

Map of
harvested
trees
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The stochastic simulation model
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SOFTWARE: AdMultRnd1_EQDIST.bas
Peter Lohmander 190107

"AdmultRndIn.txt" (= INPUT file)

"AdMultRndOut.txt" (= OUTPUT file)

If needed, maps may be produced.
33

Below, the structure of the software is described. 
(The complete software contains many more details.)



SECTION A. 
The initial conditions of relevance to all calculations are
determined.

Generation of 100 market prices series for two species with
correlation pcorr.

Generation of the positions

Generation of the species

Calculation of the distances

Generation of initial diameters
34



SECTION B. The control function parameter loops start here.

EPVmax = 0

RANDOMIZE seed2

FOR SIMN = 1 TO TOTSIMN

Ds = Dsstart + RND * (Dsstop - Dsstart)
D0 = D0start + RND * (D0stop - D0start)
Dp1 = Dpstart + RND * (Dpstop - Dpstart)
Dp2 = Dpstart + RND * (Dpstop - Dpstart)
Dc1 = Dcstart + RND * (Dcstop - Dcstart)
Dc2 = Dcstart + RND * (Dcstop - Dcstart)

35

Uniform 
probability
density
of
control
function
parameters
in six
dimensional
space



SECTION C. A number of loops of stochastic simulations start here.

FOR series = 1 TO 100

FOR i = 1 TO 100
d(i) = d0(i)

NEXT I

FOR T = 0 TO 60

36

The same initial forest conditions
are used for every price series.

A stochastic 300 year simulation starts here.

A new series of stochastic prices is selected. 



Comp(i) = 0

FOR j = 1 TO 100
IF dist(i, j) < 5 THEN Comp(i) = Comp(i) + PI / 4 * d(j) * d(j)

NEXT j

CompBA(i) = 127.32 * Comp(i)

growth occurs

37

Here, the local competition (In this case expressed as
”competing basal area per hectare” within a circle with radius 5 meters)
is calculated for every tree. 



Harvests of individual trees may or may not occur

The harvest decision of tree i is set to zero. Then the limit diameter is calculated.
In case the tree diameter exceeds the limit diameter, the harvest decision is set to one.
In case the tree diameter is below the minimum diameter, harvest is set to zero.

harv(i) = 0

Dlim = D0 + Dp * (Price - meanprice) / stdev(speci) + Ds * (speci - 1) + Dc * CompBA(i)

IF d(i) > Dlim THEN harv(i) = 1

IF d(i) < dmin(speci) THEN harv(i) = 0

38

The limit diameter
harvest control function



The revenues and costs of the harvested trees are calculated.

The discounted net revenue of all harvested trees is 
added to the present value of the series.

NEXT T
NEXT series

End of SECTION C.
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SECTION D. 

Results for each control function parameter combination are calculated and printed.

End of SECTION D.

NEXT SIMN

40



.03 
0.5    
50
50
15
15
40
40
0.2
0.2
0.70
0.70
0.0
-0.30
-0.0
0.02
-0.010
0.0
0.0
0
0
0.02
300
1

EXAMPLE
Input file
(CASE 0)

AdMultRndIn.txt
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INPUT #2, r
INPUT #2, pcorr
INPUT #2, EP(1)
INPUT #2, EP(2)
INPUT #2, stdev(1)
INPUT #2, stdev(2)
INPUT #2, kheight(1)
INPUT #2, kheight(2)
INPUT #2, dmin(1)
INPUT #2, dmin(2)
INPUT #2, D0start
INPUT #2, D0stop
INPUT #2, D0step
INPUT #2, Dpstart
INPUT #2, Dpstop
INPUT #2, Dpstep
INPUT #2, Dcstart
INPUT #2, Dcstop
INPUT #2, Dcstep
INPUT #2, Dsstart
INPUT #2, Dsstop
INPUT #2, Dsstep
INPUT #2, TOTSIMN
INPUT #2, seed2

Input section
In the software



EXAMPLE AdMultRndOut.txt
Output file
(CASE 0)

Program AdMultRnd_EQDIST by Peter Lohmander 2019:
Parameters from external file: 
r =  .03  pcorr =  .5  EP(1) =  50  EP(2) =  50 
stdev(1) =  15  stdev(2) =  15  kheight(1) =  40  kheight(2) =  40 
dmin(1) =  .2  dmin(2) =  .2 
D0start =  .7  D0stop =  .7  D0step =  0 
Dpstart = -.3  Dpstop =  0  Dpstep =  .02 
Dcstart = -.01  Dcstop =  0  Dcstep =  0 
Dsstart =  0  Dsstop =  0  Dsstep =  .02 
TOTSIMN =  300 
seed2 =  1 
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Program AdMultRnd_EQDIST by Peter Lohmander 2019:
Parameters from external file: 
r =  .03  pcorr =  .5  EP(1) =  50  EP(2) =  50 
stdev(1) =  15  stdev(2) =  15  kheight(1) =  40  kheight(2) =  40 
dmin(1) =  .2  dmin(2) =  .2 
D0start =  .7  D0stop =  .7  D0step =  0 
Dpstart = -.3  Dpstop =  0  Dpstep =  .02 
Dcstart = -.01  Dcstop =  0  Dcstep =  0 
Dsstart =  0  Dsstop =  0  Dsstep =  .02 
TOTSIMN =  300 
seed2 =  1 

D0           Dp1           Dp2           Dc1           Dc2            Ds             r           EPV
700          -149          -113           -90           -40             0            30       5546176
700           -54          -133           -95           -59             0            30       5419922
700            -1           -49           -87           -74             0            30       5177052
700           -74          -139           -49           -45             0            30       5824453
700           -30            -5           -12           -81             0            30       1807685

Many more rows follow…

43

The output from the simulation
model is the input file to the
regression software.
(Variable transformations
will be made within Excel.)



Determination of the approximation of the 
expected present value as a multivariate polynomial

of the control function parameters
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k D k D k D k D k D D

      

   

The expected present value as a quadratic function

of the parameters in the DL function (Case 0)
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First
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conditions

Objective function
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First order 
optimum conditions
of species 1 = ”Blue”

First order 
optimum conditions
of species 2 = ”Green”

Separability
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The optimal parameter value via the
analytical solution:

The second order 
maximum conditions:
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With figures from CASE 0, we get: With figures from CASE 0, we get:



Regressionsstatistik

Multipel-R 0,94869828

R-kvadrat 0,900028426

Justerad R-kvadrat 0,896569202

Standardfel 357239,6095

Observationer 300

ANOVA

fg KvS MKv F p-värde för F

Regression 10 3,32045E+14 3,32045E+13 260,1821758 3,8861E-138

Residual 289 3,68822E+13 1,2762E+11

Totalt 299 3,68927E+14

Koefficienter Standardfel t-kvot p-värde

Konstant -2051272,546 149401,4285 -13,72993931 2,27661E-33

Dp1 -27225,34464 1108,252192 -24,56601922 9,83949E-73

Dp2 -16391,15333 1043,094784 -15,71396347 1,20624E-40

Dc1 -101963,8556 3172,163703 -32,14331452 1,98109E-97

Dc2 -42856,37519 3055,416205 -14,02636247 1,9043E-34

Dp1Dp1 -37,89528101 3,24952884 -11,6617771 5,16894E-26

Dp2Dp2 -27,99794181 3,055076955 -9,16439822 9,54992E-18

Dc1Dc1 -549,0229524 26,93047653 -20,38667796 7,1657E-58

Dc2Dc2 -229,0582263 27,60918492 -8,296450147 4,13298E-15

Dp1Dc1 -208,1579104 8,435028634 -24,67779534 4,04107E-73

Dp2Dc2 -105,4858035 8,451945763 -12,48065315 6,93176E-29

Case 0
All parameters 
have the 
expected signs.

All p-values are
very low.

All t-values are
very negative.

All estimations
have very good
precision.
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The expected present value as a quadratic function

of the parameters in the DL function (Case 0)

EPV = 

- 2051.273 

- 27.225 * Dp1

- 16.391 * Dp2

- 101.964 * Dc1

- 42.856 * Dc2

- 0.037895 * Dp1 * Dp1

- 0.027998 * Dp2 * Dp2

- 0.54902 * Dc1 * Dc1

- 0.22906 * Dc2 * Dc2

- 0.20816 * Dp1 * Dc1

- 0.10549 * Dp2 * Dc2 ;
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Case 1 (r = low)

Regressionsstatistik

Multipel-R 0,89617769

R-kvadrat 0,803134452

Justerad R-kvadrat 0,796322495

Standardfel 1602172,583

Observationer 300

ANOVA

fg KvS MKv F p-värde för F

Regression 10 3,02646E+15 3,02646E+14 117,9006986 8,29119E-96

Residual 289 7,41851E+14 2,56696E+12

Totalt 299 3,76831E+15

Koefficienter Standardfel t-kvot p-värde

Konstant -3574468,076 670045,7233 -5,334662923 1,93542E-07

Dp1 -99493,25346 4970,365069 -20,01729291 1,59232E-56

Dp2 -50839,32599 4678,142681 -10,86741672 2,71691E-23

Dc1 -337550,3677 14226,73628 -23,72647956 8,23251E-70

Dc2 -101690,6792 13703,13913 -7,420976916 1,30491E-12

Dp1Dp1 -160,0287581 14,57370873 -10,98064749 1,12399E-23

Dp2Dp2 -101,2691704 13,70161764 -7,391037541 1,57737E-12

Dc1Dc1 -2031,223255 120,7796392 -16,81759665 9,93045E-45

Dc2Dc2 -620,5012689 123,8235569 -5,01117303 9,44111E-07

Dp1Dc1 -728,0266741 37,82999212 -19,24469536 1,0762E-53

Dp2Dc2 -312,2009082 37,90586322 -8,23621682 6,21763E-15

All parameters 
have the 
expected signs.

All p-values are
very low.

All t-values are
very negative.

All estimations
have very good
precision.
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Case 2 (EP1 = high)

Regressionsstatistik

Multipel-R 0,96589442

R-kvadrat 0,932952031

Justerad R-kvadrat 0,930632032

Standardfel 485810,3003

Observationer 300

ANOVA

fg KvS MKv F p-värde för F

Regression 10 9,49085E+14 9,49085E+13 402,1346794 3,8197E-163

Residual 289 6,82074E+13 2,36012E+11

Totalt 299 1,01729E+15

Koefficienter Standardfel t-kvot p-värde

Konstant -3642061,571 203171,0675 -17,92608374 7,82048E-49

Dp1 -42368,95875 1507,112637 -28,11266902 1,11596E-84

Dp2 -17332,83011 1418,505051 -12,21908241 5,82141E-28

Dc1 -173652,0372 4313,8268 -40,25475414 1,6411E-120

Dc2 -46918,99694 4155,061826 -11,29200934 9,74495E-25

Dp1Dp1 -53,98305371 4,419035683 -12,21602576 5,96751E-28

Dp2Dp2 -29,16684782 4,154600479 -7,020373672 1,58237E-11

Dc1Dc1 -828,5692999 36,62276674 -22,62443211 6,35187E-66

Dc2Dc2 -250,4301089 37,54574258 -6,670000156 1,29957E-10

Dp1Dc1 -353,1962025 11,47079911 -30,79089775 2,99728E-93

Dp2Dc2 -111,128594 11,49380472 -9,668564646 2,42745E-19

All parameters 
have the 
expected signs.

All p-values are
very low.

All t-values are
very negative.

All estimations
have very good
precision.
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Case 3 (Stdev1 = high)

Regressionsstatistik

Multipel-R 0,953421533

R-kvadrat 0,909012619

Justerad R-kvadrat 0,905864266

Standardfel 499842,9392

Observationer 300

ANOVA

fg KvS MKv F p-värde för F

Regression 10 7,21363E+14 7,21363E+13 288,7264618 4,9804E-144

Residual 289 7,22046E+13 2,49843E+11

Totalt 299 7,93567E+14

Koefficienter Standardfel t-kvot p-värde

Konstant -3237805,016 209039,6673 -15,48895029 8,17263E-40

Dp1 -43986,50192 1550,645612 -28,36657298 1,65317E-85

Dp2 -17701,19141 1459,478593 -12,12843511 1,21317E-27

Dc1 -154515,3959 4438,431761 -34,81306106 2,1481E-105

Dc2 -43823,70622 4275,080858 -10,25096546 3,10141E-21

Dp1Dp1 -61,53616208 4,546679604 -13,53430799 1,16395E-32

Dp2Dp2 -30,70382818 4,274606185 -7,182843717 5,81534E-12

Dc1Dc1 -803,5153906 37,68061599 -21,32436983 2,8664E-61

Dc2Dc2 -224,8491006 38,630252 -5,820544495 1,55702E-08

Dp1Dc1 -336,7686865 11,80213334 -28,5345604 4,69401E-86

Dp2Dc2 -109,4513287 11,82580346 -9,255297453 4,96251E-18

All parameters 
have the expected
signs.

All p-values are
very low.

All t-values are
very negative.

All estimations
have very good
precision.
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Optimization of the control function
parameters
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Influence of price deviations 
from expected price levels on 
instant harvesting decisions

Influence
of local
competition
levels
on instant
harvesting 
decisions
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Influence of deviations from expected price levels on instant harvesting decisions

Influence of local competition levels
on instant harvesting decisions
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! Case 0_EQDIST_190108_1337;
! Peter Lohmander;

model:

max = EPV;

EPV = 

- 2051.273 

- 27.225 * Dp1

- 16.391 * Dp2

- 101.964 * Dc1

- 42.856 * Dc2

- 0.037895 * Dp1 * Dp1

- 0.027998 * Dp2 * Dp2

- 0.54902 * Dc1 * Dc1

- 0.22906 * Dc2 * Dc2

- 0.20816 * Dp1 * Dc1

- 0.10549 * Dp2 * Dc2 ;

@free(Dp1);

@free(Dp2);

@free(Dc1);

@free(Dc2);

end

Variable Value

EPV        6216.348

DP1       -217.3312

DP2       -205.7293

DC1       -51.65963

DC2       -46.17485

Case 0
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The analytical method gave
the same answer:

The analytical method also told us
that the solution is a unique maximum.



Variable Value

Case 1! Case 1_r is low_190108_1353;
! Peter Lohmander;

model:

max = EPV;

EPV = 

- 3574.468 

- 99.493 * Dp1

- 50.839 * Dp2

- 337.550 * Dc1

- 101.691 * Dc2

- 0.160029 * Dp1 * Dp1

- 0.101269 * Dp2 * Dp2

- 2.031223 * Dc1 * Dc1

- 0.620501 * Dc2 * Dc2

- 0.728027 * Dp1 * Dc1

- 0.312201 * Dp2 * Dc2 ;

@free(Dp1);

@free(Dp2);

@free(Dc1);

@free(Dc2);

end

EPV        21199.22

DP1       -205.7134

DP2       -203.6856

DC1       -46.22464

DC2       -30.70111

(r = low)
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Variable Value

Case 2! Case 2 EP1 is high_EQDIST_190108_1408;

! Peter Lohmander;

model:

max = EPV;

EPV = 

- 3642.062 

- 42.369 * Dp1

- 17.333 * Dp2

- 173.652 * Dc1

- 46.919 * Dc2

- 0.053983 * Dp1 * Dp1

- 0.029167 * Dp2 * Dp2

- 0.82857 * Dc1 * Dc1

- 0.25043 * Dc2 * Dc2

- 0.35320 * Dp1 * Dc1

- 0.11113 * Dp2 * Dc2 ;

@free(Dp1);

@free(Dp2);

@free(Dc1);

@free(Dc2);

end

EPV        8804.599

DP1       -163.8983

DP2       -205.5634

DC1       -69.85717

DC2       -48.06680

(EP1 = high)
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Variable Value

Case 3! Case 3 Stdev1 is high_EQDIST_190108_1424;

! Peter Lohmander;

model:

max = EPV;

EPV = 

- 3237.805 

- 43.987 * Dp1

- 17.701 * Dp2

- 154.515 * Dc1

- 43.824 * Dc2

- 0.061536 * Dp1 * Dp1

- 0.030704 * Dp2 * Dp2

- 0.80352 * Dc1 * Dc1

- 0.22485 * Dc2 * Dc2

- 0.33677 * Dp1 * Dc1

- 0.10945 * Dp2 * Dc2 ;

@free(Dp1);

@free(Dp2);

@free(Dc1);

@free(Dc2);

end

EPV        8320.552

DP1       -221.0902

DP2       -202.3298

DC1       -49.81733

DC2       -48.20771

(Stdev1 = high)
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The optimal control of the forest
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Instant Harvest
Region

OPTIMAL CONTROL:
(of trees of species 1)

Wait Longer
Region

Local competition levelDeviation of the price of species 1 
from the expected price level

Case 0
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Instant Harvest
Region

Wait Longer
Region

Optimal 
Control 
Boundaries
as 
functions of
the local
competition
levels

= Optimal Limit Diameter of Species 1

Deviation of the price of species 1 from the expected price level
68



= Local competition level

Deviation of the price of species 1 from the expected price level

Instant Harvest
Region

Wait Longer
Region

Optimal 
Control 
Boundaries
as 
functions of
the diameters 
of the 
individual
trees
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Optimal changes of forest control decisions
if these parameters change:

- the rate of interest, 
- the expected prices,

- the degrees of stochastic price variations
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Case 1 (r = low)

• The real rate of interest, r, decreases from 3% to 1%.
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The optimal control boundary shifts to North East.
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Case 1 (r = low)

• The real rate of interest, r, decreases from 3% to 1%.

• The optimal control boundary shifts to North East. 

• To motivate instant harvesting, the level of competition and/or the 
price has to be higher than before the change.

• The expected size of the trees (when they are harvested) is larger
with a low rate of interest. 

• The expected present value is 3.41 times higher than if r = 0.03.
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Case 2 (EP1 = high)

• The expected price of species 1 increases by 40% (from 50 to 70).
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The optimal control boundary of
species 1 is rotated to the left. 
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Consider a small tree (d = 0.3).
Assume that the expected price of that
species, EP1, increases (from 50 to 70).
Consider normal competition C1 = 25.
The dP1 needed to motivate instant
harvesting increases (from A. to B.).
Hence, the probability of instant
harvesting of the small tree decreases.
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Consider a large tree (d = 0.5).
Assume that the expected price of that
species, EP1, increases (from 50 to 70).
Consider normal competition C1 = 25.
The dP1 needed to motivate instant
harvesting decreases (from C. to D.).
Hence, the probability of instant
harvesting of the large tree increases.
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The probability that a small tree (d = 0.3) 
should be harvested decreases if the expected
price of that species increases.

If the expected price of one species 
increases (and the absolute standard 
deviation of the price is not changed), 
it is less likely that it is optimal to 
harvest trees of that species when
they are still small. 
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The probability that a small tree (d = 0.3) 
should be harvested decreases if the expected
price of that species increases.

If the expected price of one species 
increases (and the absolute standard 
deviation of the price is not changed), 
it is more likely that it is optimal to 
harvest trees of that species when
they have reached some optimal size. 
Stochastic market price changes
influence the optimal harvesting less.
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Case 2 (EP1 = high)

• The expected price of species 1 increases by 40% (from 50 to 70).

• The optimal control boundary of species 1 is rotated to the left.

• If the expected price of one species increases (and the absolute standard 
deviation of the price is not changed), it is less likely that it is optimal to 
harvest trees of that species when they are still small.

• If the expected price of one species increases (and the absolute standard 
deviation of the price is not changed), it is more likely that it is optimal to 
harvest trees of that species when they have reached some optimal size. 
Stochastic market price changes influence the optimal harvesting less.

• The expected present value is 1.42 times higher than before.
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Case 3 (Stdev1 = high)

• The standard deviation of the price of species 1 increases by 100% 
(from 15 to 30).
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The optimal control boundary of
species 1 shifts to North East.
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Case 3 (Stdev1 = high)

• The standard deviation of the price of species 1 increases by 100% 
(from 15 to 30).

• The optimal control boundary of species 1 shifts to North East.

• If harvesting of a tree of species 1 should be optimal, the price has to 
be higher than before. This is reasonable since the probabilities of
high prices are higher than before and we want to harvest when
prices are high. Hence, we should request a higher price in order to 
harvest. Otherwise we can wait longer for a good price.

• The expected present value is 1.34 times higher than before.
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CONCLUSIONS
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Optimization of Multi Species Continuous Cover Forest Management with Stochastic Prices via Determination of
the Adaptive Harvest Control Function

Peter Lohmander
18th Symposium on Systems Analysis in Forest Resources, SSAFR March 3 - 7, 2019 Puerto Varas, Chile

• The Limit Diameter ( = DL) is a function of the tree species. 

• Furthermore, if the rate of interest in the capital market increases, 
the DL decreases. 

• The DL is also a decreasing function of the stochastic deviations of the 
price from the expected values

• and a decreasing function of the local competition from neighbour
trees.
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Optimization of Multi Species Continuous Cover Forest Management with Stochastic Prices via Determination of
the Adaptive Harvest Control Function

Peter Lohmander
18th Symposium on Systems Analysis in Forest Resources, SSAFR March 3 - 7, 2019 Puerto Varas, Chile

A particular tree should be harvested also at a smaller diameter than
otherwise

• in case it belongs to a species with lower value of the species 
parameter in the DL, 

• in case the rate of interest increases, 

• if the market price of wood from the particular species unexpectedly
increases and/or 

• if the local competition from neighbour trees increases. 
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Optimization of Multi Species Continuous Cover Forest Management with Stochastic Prices via Determination of
the Adaptive Harvest Control Function

Peter Lohmander
18th Symposium on Systems Analysis in Forest Resources, SSAFR March 3 - 7, 2019 Puerto Varas, Chile

The expected present value of an optimally managed mixed species 
continuous cover forest is

• a decreasing function of the rate of interest in the capital market,

• an increasing function of the expected price levels of different species, 

• an increasing function of the degree of market price variation 
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APPENDIX:

THE SOFTWARE
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REM AdMultRnd1_EQDIST.bas
REM Peter Lohmander 190107_1720
REM

DIM x(100), y(100), d(100), ba(100), dist(100, 100), d0(100), harv(100)
DIM height(100), vol(100), revenue(100), cost(100), species(100), qual(100)
DIM MarketP(100, 2, 100), Comp(100), Volperha(2), PresVal(100)
DIM dmin(2), kheight(2), EP(2), stdev(2), CompBA(100)

PI = 3.141593

OPEN "AdmultRndIn.txt" FOR INPUT AS #2

OPEN "AdMultRndOut.txt" FOR OUTPUT AS #1

REM SCREEN 12
SCREEN _NEWIMAGE(1800, 800, 12)
COLOR 1, 15
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REM ***************************************************************************
REM SECTION 0. Parameter inputs from external file and parameter documentation.
REM ***************************************************************************

INPUT #2, r
INPUT #2, pcorr
INPUT #2, EP(1)
INPUT #2, EP(2)
INPUT #2, stdev(1)
INPUT #2, stdev(2)
INPUT #2, kheight(1)
INPUT #2, kheight(2)
INPUT #2, dmin(1)
INPUT #2, dmin(2)
INPUT #2, D0start
INPUT #2, D0stop
INPUT #2, D0step
INPUT #2, Dpstart
INPUT #2, Dpstop
INPUT #2, Dpstep
INPUT #2, Dcstart
INPUT #2, Dcstop
INPUT #2, Dcstep
INPUT #2, Dsstart
INPUT #2, Dsstop
INPUT #2, Dsstep
INPUT #2, TOTSIMN
INPUT #2, seed2
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PRINT " Program AdMultRnd_EQDIST by Peter Lohmander 2019:"
PRINT #1, " Program AdMultRnd_EQDIST by Peter Lohmander 2019:"
PRINT " Parameters from external file: "
PRINT "  r = "; r; " pcorr = "; pcorr; " EP(1) = "; EP(1); " EP(2) = "; EP(2)
PRINT "  stdev(1) = "; stdev(1); " stdev(2) = "; stdev(2); " kheight(1) = "; kheight(1); " kheight(2) = "; kheight(2)
PRINT "  dmin(1) = "; dmin(1); " dmin(2) = "; dmin(2)
PRINT "  D0start = "; D0start; " D0stop = "; D0stop; " D0step = "; D0step
PRINT "  Dpstart = "; Dpstart; " Dpstop = "; Dpstop; " Dpstep = "; Dpstep
PRINT "  Dcstart = "; Dcstart; " Dcstop = "; Dcstop; " Dcstep = "; Dcstep
PRINT "  Dsstart = "; Dsstart; " Dsstop = "; Dsstop; " Dsstep = "; Dsstep
PRINT "  TOTSIMN = "; TOTSIMN
PRINT "    seed2 = "; seed2
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PRINT #1, " Parameters from external file: "
PRINT #1, "  r = "; r; " pcorr = "; pcorr; " EP(1) = "; EP(1); " EP(2) = "; EP(2)
PRINT #1, "  stdev(1) = "; stdev(1); " stdev(2) = "; stdev(2); " kheight(1) = "; kheight(1); " kheight(2) = "; kheight(2)
PRINT #1, "  dmin(1) = "; dmin(1); " dmin(2) = "; dmin(2)
PRINT #1, "  D0start = "; D0start; " D0stop = "; D0stop; " D0step = "; D0step
PRINT #1, "  Dpstart = "; Dpstart; " Dpstop = "; Dpstop; " Dpstep = "; Dpstep
PRINT #1, "  Dcstart = "; Dcstart; " Dcstop = "; Dcstop; " Dcstep = "; Dcstep
PRINT #1, "  Dsstart = "; Dsstart; " Dsstop = "; Dsstop; " Dsstep = "; Dsstep
PRINT #1, "  TOTSIMN = "; TOTSIMN
PRINT #1, "    seed2 = "; seed2
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drawmaps = 0
INPUT "Draw maps? Then write 1, otherwise 0", drawmaps

IF drawmaps = 0 THEN PRINT " "
IF drawmaps = 0 THEN PRINT "            D0           Dp1           Dp2           Dc1           Dc2            Ds             r           EPV"
PRINT #1, " "
PRINT #1, "            D0           Dp1           Dp2           Dc1           Dc2            Ds             r           EPV"

REM *****************
REM End of SECTION 0.
REM *****************
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RANDOMIZE 5

REM **********************************************************************************
REM SECTION A. The initial conditions of relevance to all calculations are determined.
REM **********************************************************************************

REM Generation of 100 market prices series for two species with correlation pcorr.

FOR series = 1 TO 100
pcorr = 0.5
FOR T = 0 TO 100

FOR i = 1 TO 2
epsilon = 0
FOR ii = 1 TO 12

epsilon = epsilon + RND
NEXT ii
epsilon = (epsilon - 6)
IF i = 1 THEN randn1 = epsilon
IF i = 2 THEN randn2 = epsilon
IF i = 2 THEN randn3 = pcorr * randn1 + (1 - pcorr ^ 2) ^ .5 * randn2

NEXT i
MarketP(T, 1, series) = EP(1) + stdev(1) * randn1
MarketP(T, 2, series) = EP(2) + stdev(2) * randn3

NEXT T
NEXT series
PRINT "" 95



REM Generation of the positions

FOR i = 1 TO 100
x(i) = 30 * RND
y(i) = 30 * RND

NEXT i
PRINT ""

REM Generation of the species

FOR i = 1 TO 100
species(i) = 1
IF RND > 0.5 THEN species(i) = 2

NEXT i
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REM Calculation of the distances

FOR i = 1 TO 100
FOR j = 1 TO 100

distx = x(i) - x(j)
disty = y(i) - y(j)
dist(i, j) = (distx * distx + disty * disty) ^ 0.5

NEXT j
NEXT i
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REM Generation of initial diameters

FOR i = 1 TO 100
REM Note that in this version of the code, the initial distributions
REM of the two species are identical. (Compare next row.)

IF species(i) > 0.5 THEN GOTO 1010

1001 REM New diameter suggestion
dia = 0.1 + RND * 0.4
freq = 1 - (2 * dia) ^ 2
test = RND
IF test > freq THEN GOTO 1001
d0(i) = dia
GOTO 1020
1010 REM
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1011 REM New diameter suggestion
dia = 0.1 + RND * 0.3
freq = 1 - (2.5 * dia) ^ 2
test = RND
IF test > freq THEN GOTO 1011
d0(i) = dia

1020 REM
NEXT i

REM *****************
REM End of SECTION A.
REM *****************
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REM ***********************************************************
REM SECTION B. The control function parameter loops start here.
REM ***********************************************************

EPVmax = 0

RANDOMIZE seed2

FOR SIMN = 1 TO TOTSIMN

Ds = Dsstart + RND * (Dsstop - Dsstart)
D0 = D0start + RND * (D0stop - D0start)
Dp1 = Dpstart + RND * (Dpstop - Dpstart)
Dp2 = Dpstart + RND * (Dpstop - Dpstart)
Dc1 = Dcstart + RND * (Dcstop - Dcstart)
Dc2 = Dcstart + RND * (Dcstop - Dcstart)
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REM *******************************************************************
REM SECTION C. A number of loops of stochastic simulations start here.
REM *******************************************************************

FOR series = 1 TO 100
PresVal(series) = 0
REM PRINT "Series = "; series

REM A new simulation is started from year 0

FOR i = 1 TO 100
d(i) = d0(i)

NEXT i
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FOR T = 0 TO 60

MarketP1 = MarketP(T, 1, series)
MarketP2 = MarketP(T, 2, series)
year = T * 5
discf = EXP(-year * r)

IF drawmaps = 0 THEN GOTO 600
CLS
PRINT " Series = "; series; " Period = "; T; " Year = "; year; " P1 = "; MarketP1; " P2 = "; MarketP2
PRINT " Map before growth and before harvest: "
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FOR i = 1 TO 100
FOR interior = 0.05 TO 1 STEP 0.05

CIRCLE (INT(20 * x(i) + 100), INT(20 * y(i) + 100)), INT(100 * d(i) * interior / 5), species(i)
NEXT interior

NEXT i
LINE (100, 100)-(700, 100), 3
LINE (100, 100)-(100, 700), 3
LINE (700, 100)-(700, 700), 3
LINE (100, 700)-(700, 700), 3
SLEEP
600 REM

REM growth occurs

FOR speci = 1 TO 2
Volperha(speci) = 0

NEXT speci
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FOR i = 1 TO 100
Comp(i) = 0
FOR j = 1 TO 100

IF dist(i, j) < 5 THEN Comp(i) = Comp(i) + PI / 4 * d(j) * d(j)
NEXT j
CompBA(i) = 127.32 * Comp(i)
Compadjust = (1 - 0.02 * CompBA(i))
IF Compadjust < 0 THEN Compadjust = 0
d(i) = d(i) + 0.1 * (1 - 0.5 * d(i)) * Compadjust
speci = species(i)
ba(i) = PI / 4 * d(i) * d(i)
height(i) = kheight(speci) * d(i)
vol(i) = 0.5 * ba(i) * height(i)
Volperha(speci) = Volperha(speci) + vol(i) / 0.09

NEXT i
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IF drawmaps = 0 THEN GOTO 601
CLS
PRINT " Series = "; series; " Period = "; T; " Year = "; year; " P1 = "; MarketP1; " P2 = "; MarketP2
PRINT " Map after growth and before harvest: "

FOR i = 1 TO 100
FOR interior = 0.05 TO 1 STEP 0.05

CIRCLE (INT(20 * x(i) + 100), INT(20 * y(i) + 100)), INT(100 * d(i) * interior / 5), species(i)
NEXT interior

NEXT i
LINE (100, 100)-(700, 100), 3
LINE (100, 100)-(100, 700), 3
LINE (700, 100)-(700, 700), 3
LINE (100, 700)-(700, 700), 3
SLEEP
601 REM
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REM Harvests of individual trees may or may not occur
Totvolperha = Volperha(1) + Volperha(2)

FOR i = 1 TO 100
speci = species(i)
Price = MarketP(T, speci, series)
meanprice = EP(speci)
Dp = Dp1
IF speci > 1.5 THEN Dp = Dp2
Dc = Dc1
IF speci > 1.5 THEN Dc = Dc2

REM The harvest decision of tree i is set to zero. Then the limit diameter is calculated.
REM In case the tree diameter exceeds the limit diameter, the harvest decision is set to one.
harv(i) = 0

Dlim = D0 + Dp * (Price - meanprice) / stdev(speci) + Ds * (speci - 1) + Dc * CompBA(i)

IF d(i) > Dlim THEN harv(i) = 1

IF d(i) < dmin(speci) THEN harv(i) = 0
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REM The revenues and costs of the harvested trees are calculated.
psizecorr = -0.25 + 2.5 * d(i)
IF psizecorr > 1 THEN psizecorr = 1
IF psizecorr < 0 THEN psizecorr = 0
revenue(i) = Price * psizecorr * vol(i) * harv(i)
costperm3 = 125 - 250 * d(i)
IF costperm3 < 25 THEN costperm3 = 25
cost(i) = costperm3 * vol(i) * harv(i)
IF revenue(i) < cost(i) THEN harv(i) = 0

NEXT i
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REM The discounted net revenue of all harvested trees is added to the present value of the series.
netrev = 0
FOR i = 1 TO 100

netrev = netrev + (revenue(i) - cost(i)) * harv(i)
NEXT i
PresVal(series) = PresVal(series) + discf * netrev
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IF drawmaps = 0 THEN GOTO 602
CLS
PRINT " Series = "; series; " Period = "; T; " Year = "; year; " P1 = "; MarketP1; " P2 = "; MarketP2
PRINT " Map of harvested trees: "

FOR i = 1 TO 100
IF harv(i) = 0 THEN GOTO 7070
FOR interior = 0.05 TO 1 STEP 0.05

CIRCLE (INT(20 * x(i) + 100), INT(20 * y(i) + 100)), INT(100 * d(i) * interior / 5), species(i)
NEXT interior
7070 REM

NEXT i
LINE (100, 100)-(700, 100), 3
LINE (100, 100)-(100, 700), 3
LINE (700, 100)-(700, 700), 3
LINE (100, 700)-(700, 700), 3
SLEEP
602 REM
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FOR i = 1 TO 100
IF harv(i) = 1 THEN d(i) = 0.05

NEXT i

IF drawmaps = 0 THEN GOTO 603
CLS
PRINT " Series = "; series; " Period = "; T; " Year = "; year; " P1 = "; MarketP1; " P2 = "; MarketP2
PRINT " Map after harvest: "

FOR i = 1 TO 100
FOR interior = 0.05 TO 1 STEP 0.05

CIRCLE (INT(20 * x(i) + 100), INT(20 * y(i) + 100)), INT(100 * d(i) * interior / 5), species(i)
NEXT interior

NEXT i
LINE (100, 100)-(700, 100), 3
LINE (100, 100)-(100, 700), 3

LINE (700, 100)-(700, 700), 3
LINE (100, 700)-(700, 700), 3
SLEEP
603 REM
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NEXT T
NEXT series

REM *****************
REM End of SECTION C.
REM *****************
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REM *************************************************************************************
REM SECTION D. Results for each control function parameter combination are calculated and printed.
REM *************************************************************************************

EPV = 0
FOR series = 1 TO 100

EPV = EPV + PresVal(series) / 100
NEXT series
REM Calculation of EPV per ha
EPV = EPV / 0.09
IF EPV < EPVmax THEN GOTO 900
D0opt = D0
Dp1opt = Dp1
Dp2opt = Dp2
Dc1opt = Dc1
Dc2opt = Dc2

Dsopt = Ds
EPVmax = EPV
900 REM
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kD0 = D0 * 1000
kDp1 = Dp1 * 1000
kDp2 = Dp2 * 1000
kDc1 = Dc1 * 10000
kDc2 = Dc2 * 10000
kDs = Ds * 1000
kr = r * 1000
kEPV = EPV * 1000

PRINT USING "##############"; kD0; kDp1; kDp2; kDc1; kDc2; kDs; kr; kEPV
PRINT #1, USING "##############"; kD0; kDp1; kDp2; kDc1; kDc2; kDs; kr; kEPV

REM *****************
REM End of SECTION D.
REM *****************

NEXT SIMN
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kD0opt = D0opt * 1000
kDp1opt = Dp1opt * 1000
kDp2opt = Dp2opt * 1000
kDc1opt = Dc1opt * 10000
kDc2opt = Dc2opt * 10000
kDsopt = Dsopt * 1000
kEPVmax = EPVmax * 1000

PRINT ""
PRINT " r = "; r
PRINT "  The Optimal Solution is (Most values times 1000. Dc1 and Dc2: Values times 10000): "
PRINT "            D0           Dp1           Dp2           Dc1           Dc2            Ds           EPV"
PRINT USING "##############"; kD0opt; kDp1opt; kDp2opt; kDc1opt; kDc2opt; kDsopt; kEPVmax
PRINT "-------------------------------------------------------------------------------------------------"
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PRINT #1, ""
PRINT #1, " r = "; r
PRINT #1, "  The Optimal Solution is (Most values times 1000. Dc1 and Dc2: Values times 10000): "
PRINT #1, "            D0           Dp1           Dp2           Dc1           Dc2            Ds           EPV"
PRINT #1, USING "##############"; kD0opt; kDp1opt; kDp2opt; kDc1opt; kDc2opt; kDsopt; kEPVmax
PRINT #1, "------------------------------------------------------------------------------------------------"

REM *****************
REM End of SECTION B.
REM *****************

CLOSE #1
CLOSE #1
BEEP
END
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.03 
0.5    
50
50
15
15
40
40
0.2
0.2
0.70
0.70
0.0
-0.30
-0.0
0.02
-0.010
0.0
0.0
0
0
0.02
300
1

EXAMPLE
Input file
(CASE 0)

AdMultRndIn.txt
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EXAMPLE AdMultRndOut.txt
Output file
(CASE 0)

Program AdMultRnd_EQDIST by Peter Lohmander 2019:
Parameters from external file: 
r =  .03  pcorr =  .5  EP(1) =  50  EP(2) =  50 
stdev(1) =  15  stdev(2) =  15  kheight(1) =  40  kheight(2) =  40 
dmin(1) =  .2  dmin(2) =  .2 
D0start =  .7  D0stop =  .7  D0step =  0 
Dpstart = -.3  Dpstop =  0  Dpstep =  .02 
Dcstart = -.01  Dcstop =  0  Dcstep =  0 
Dsstart =  0  Dsstop =  0  Dsstep =  .02 
TOTSIMN =  300 
seed2 =  1 
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Program AdMultRnd_EQDIST by Peter Lohmander 2019:
Parameters from external file: 
r =  .03  pcorr =  .5  EP(1) =  50  EP(2) =  50 
stdev(1) =  15  stdev(2) =  15  kheight(1) =  40  kheight(2) =  40 
dmin(1) =  .2  dmin(2) =  .2 
D0start =  .7  D0stop =  .7  D0step =  0 
Dpstart = -.3  Dpstop =  0  Dpstep =  .02 
Dcstart = -.01  Dcstop =  0  Dcstep =  0 
Dsstart =  0  Dsstop =  0  Dsstep =  .02 
TOTSIMN =  300 
seed2 =  1 

D0           Dp1           Dp2           Dc1           Dc2            Ds             r           EPV
700          -149          -113           -90           -40             0            30       5546176
700           -54          -133           -95           -59             0            30       5419922
700            -1           -49           -87           -74             0            30       5177052
700           -74          -139           -49           -45             0            30       5824453
700           -30            -5           -12           -81             0            30       1807685

Many more rows follow…
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SSAFR 2019 Song: Methods in Math
Lyrics: Peter Lohmander
Melody: Dire Straits, Brothers in Arms

Inconsistent solutions 
We know them by now,
But our background is science,
Where math is key,
Some day you'll return to
Derivations so pure,
You'll no longer risk 
To be guessing and wrong

Through these fields of confusion,
Incompleteness and lies,
I've witnessed your suffering,
As the errors grow wild,
And though they did hurt us so bad
With solutions quite wrong,
You did not desert me
My methods in math

There's so many different plans
So many different trends
And there is just one solution,
Which is the optimal one

Now our science goes quite well
Our solutions ride high
Now we all know very well
Every lie has to die
But it's written in the starlight
And every line in your palm
Only fools can make war
On our methods in math

Yoni Schlesinger | Brothers in Arms (Dire Straits) 
solo fingerstyle | B&G Little Sister
https://www.youtube.com/watch?v=7QEeQhMr33E

http://www.lohmander.com/
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SSAFR song  
by Peter Lohmander 2017-08-29 
(Melody: Sancta Lucia) 

Systems analysis,  
in forest resources, 
thats what our planet needs,  
lets gather our forces, 
to optimize management,  
consider logistics, 
do not forget the many animals,  
climate and fires. 



Faustmann song 
by Peter Lohmander 1984-12-13 
(Melody: Sancta Lucia) 

Economic society, 
deep in the forest, 
we are all gathered here, 
in the honor of Faustmann, 
the whole world we represent, 
and the gold that is green, 
which we then transform to money, 
in the optimal way. 


